From the Institute of Pharmacology and Toxicology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.

RENAL EXCRETION OF N⁴-ACETYL SULPHANILAMIDE AND N⁴-ACETYL SULPHADIMIDINE IN GOATS

By

Sigrid Tue Jørgensen, Poul Nielsen and Folke Rasmussen

JØRGENSEN, SIGRID TUE, POUL NIELSEN and FOLKE RAS-MUSSEN: Renal excretion of N⁴-acetyl sulphanilamide and N⁴-acetyl sulphadimidine in goats. Acta vet. scand. 1974, 15, 188—197. — The renal excretion of N⁴-acetyl sulphanilamide and N⁴-acetyl sulphadimidine was studied in 19 experiments with 6 goats during continuous intravenous administration of the 2 sulphonamide derivatives. Deacetylation of both compounds takes place to a small extent only. Further it is shown that both sulphonamide derivatives are bound to plasma proteins to a greater extent than sulphanilamide and sulphadimidine. The excretion of the N⁴-acetylated sulphonamides is compared with the renal excretion of creatinine. The non-protein-bound fraction of the 2 N⁴-acetylated sulphonamides is excreted by filtration and active tubular secretion. The renal clearances of the acetyl derivatives are higher than those of the parent compounds.

renal excretion; sulphonamides; N⁴-acetyl sulphanilamide; N⁴-acetyl sulphadimidine; proteinbinding; deacetylation.

In experiments concerning the renal excretion of sulphonamides it has been reported that the renal clearance is considerably higher for the endogenously synthesized N⁴-acetyl derivatives than for the parent compounds. For instance this has been shown for sulphanilamide in man (*Frisk* 1943, *Loomis et al.* 1944), dogs (*Arita et al.* 1972), and goats (*Jørgensen & Rasmussen* 1972); for sulphadimidine (4,6-dimethyl-2-sulphanilamido-pyrimidine) in man (*Volini et al.* 1945, *Fischer* 1972), pigs (*Dalgaard-Mikkelsen & Poulsen* 1956), goats (*Jørgensen & Rasmussen*), and cows (*Nielsen* 1973); for sulphadoxine (5,6-dimethoxy-4-sulphanilamido-pyrimidine) in man (*Madsen & Iversen* 1963, *Reber et al.* 1963, Böhni et al. 1969) and for sulphamethoxazole (5-methyl-3-sulphanilamido-isoxazole) in man (Reber et al.).

The purpose of the present work was to investigate the renal excretion in goats of exogenously synthesized N⁴-acetyl sulphanilamide and N⁴-acetyl sulphadimidine after intravenous administration to the animals.

MATERIALS AND METHODS

Six goats weighing from 30 to 45 kg were used in 19 experiments. The N⁴-acetyl sulphonamides were dissolved in distilled water by heating and simultaneous addition of 5 N-NaOH. The solutions were then administered to the goats by an initial intravenous injection followed by a continuous infusion in order to keep the plasma concentration at a constant level. Analysis showed that the solutions administered to the goats contained exclusively N⁴-acetyl sulphonamide. The initial dose of N⁴-acetyl sulphanilamide and N⁴-acetyl sulphadimidine was 15—70 mg/kg b.wt. and 7—35 mg/kg b.wt., respectively, while the maintenance dose varied between 25 and 140 mg/kg b.wt. for both compounds.

The experiments with N⁴-acetyl sulphonamide alone comprised 5 experimental periods, each of 30 min. duration. The experiments with both N⁴-acetyl sulphonamide and diodone comprised 6 periods. During the last 3 periods diodone (Diodonum NFN) and N⁴-acetyl sulphonamide were administered simultaneously to the goats. The diodone was dissolved in distilled water and administered to the goats in the same way as the N⁴-acetyl sulphonamide in order to ensure a constant plasma concentration. The initial and the maintenance doses of diodone were 100 mg/kg b.wt. and 450—600 mg/kg b.wt., respectively.

Blood samples were collected in heparinized vials 10 min. after the beginning of every experimental period. Urine was collected quantitatively by means of a balloon catheter (Rüsch no. 14, 30 ml) which was placed in the bladder.

The pH-values of the blood and urine samples were measured potentiometrically with micro glass electrode (Radiometer) at 37°C immediately after finishing each experiment. Proteinbinding was determined by ultrafiltration through cellophane membrane (*Poulsen* 1956). The concentration of free sulphonamide in the plasma and urine samples was determined by the method of *Bratton & Marshall* (1939). The concentration of total sulphonamide was determined in the same samples after hydrolysis with hydrochloric acid. The concentration of N⁴-acetylated sulphonamide was calculated as being the difference between the concentration of total and that of free sulphonamide.

The renal clearance of sulphonamide is compared with the renal clearance of creatinine which expresses the filtration clearance in goats as shown by Jørgensen & Rasmussen (1972).

RESULTS

N^4 -acetyl sulphanilamide

The N⁴-acetyl sulphanilamide was deacetylated to a small extent in the goats. The amount of free sulphanilamide varied between 9 and 14 % of the total sulphonamide in the blood plasma while only 3-6 % appeared in the urine samples.

From Table 1 can be seen that the clearance of N⁴-acetyl sulphanilamide in blood plasma is higher than or equal to the clearance of creatinine (column 9). On an average $28 \pm 1 \%$ (m. \pm s.e.m.) of the 4⁴-acetyl sulphanilamide is bound to the plasma proteins, and the clearance of the non-protein-bound N⁴-acetyl sulphanilamide is 1.3—2 times higher than the clearance of creatinine (last column). The clearance of N⁴-acetyl sulphanilamide is independent of its concentration in the plasma in an interval from 15 to 87 µg N⁴-acetyl sulphanilamide per ml (Table 1).

In 1 experiment the renal excretion of N⁴-acetyl sulphanilamide was determined during loading with diodone, and the results from this experiment are shown in Table 2. It appears that diodone loading distinctly reduces the clearance of N⁴-acetyl sulphanilamide. Calculation of the ratio between the clearance of non-protein-bound N⁴-acetyl sulphanilamide and the clearance of creatinine shows that the ratio was about 2 before loading with diodone while it was reduced to about 1 during the loading.

N⁴-acetyl sulphadimidine

From 6 to 13 % of the total contents of sulphonamide in the blood was found to be present in its free form while the corresponding value was 3-6 % in the urine samples.

					Cleara	nce ml/min	./10 kg	Ratio	Ratio
1005	Illino flom	Tuino	NA sastulated	NA gootulated		D.WI.		clearance of	clearance of
no.	ml/min.	pH	sulphonamide in blood	M-acctytated sulphonamide in ultra.	N ⁴ -acet sulphon	ylated amide in	crea- tinine	N4-acetylated sulphonamide	N*-acetylated sulphonamide
	minmax.	minmax.	plasma µg/ml	filtrate of blood plasma	blood plasma	ultra- filtrate		in blood plasma	in ultrafiltrate of blood plasma
				µg/ml		of blood plasma		clearance of creatinine	clearance of creatinine
45	4.4-8.7	7.9—8.0	14.8	11.8	32.8	42.4	20.4	1.6	2.1
45	0.4 - 0.7	8.4-8.5	21.6	15.1	32.8	46.9	25.5	1.3	1.9
48	1.3 - 3.4	7.9-8.3	22.2	16.8	28.0	37.1	28.8	1.0	1.3
47	2.9 - 6.3	7.9-8.0	23.2	17.4	24.6	32.8	19.8	1.2	1.7
47	0.7 - 0.8	8.4-8.5	24.7	17.9	25.6	35.5	19.3	1.3	1.8
46	1.5 - 2.9	7.9-8.3	25.0	20.6	35.3	42.8	21.9	1.6	2.0
40	0.4 - 1.0	8.5-8.5	25.6	17.0	17.6	26.6	16.5	1.1	1.6
48	0.6 - 3.5	7.5-8.3	43.6	31.5	35.4	49.0	31.8	1.1	1.5
40	1.9 - 2.2	8.28.3	50.2	36.7	22.3	30.5	23.9	0.9	1.3
45	1.5 - 2.0	8.48.5	73.0	46.6	29.9	46.8	21.3	1.4	2.2
46	1.9 - 6.1	7.9-8.3	76.9	51.8	36.2	53.8	27.7	1.3	1.9
47	1.9 - 6.7	7.8-8.3	86.2	61.1	19.8	27.9	19.2	1.0	1.5
47	1.7 - 2.0	8.2-8.2	86.6	57.9	23.4	35.0	21.7	1.1	1.6
m. + s	.e.m.				28 ± 2	39 ± 2	23 ± 1	1.2 ± 0.1	1.7 ± 0.1

T a ble 1. Clearance of creatinine and N⁴-acetyl sulphanilamide.

Renal excretion in goats

191

Observation	Conc. of	Cleara	ance ml/min b.wt.	./10 kg	Ratio clearance of	Ratio clearance of
no.	N ⁴ -acetyl sulphon- amide	N ⁴ - sulphor	acetyl 1amide in	crea- tinine	N ⁴ -acetyl sulphonamide	N ⁴ -acetyl sulph- onamide in
	in blood plasma	blood	ultra- filtrate of blood plasma		in blood plasma	ultrafiltrate of blood plasma
	µg/ml	prosing			clearance of creatinine	clearance of creatinine
1	15.0	31.6	40.8	18.1	1.7	2.3
2	13.0	31.9	41.2	19.2	1.7	2.2
3	15.5	35.0	45.1	24.0	1.5	1.9
Diodone						
4	16.2	13.9	17.9	17.8	0.8	1.0
5	19.6	13.0	16.7	18.5	0.7	0.9
6	17.6	13.9	17.9	18.6	0.7	1.0

Table 2. Clearance of N⁴-acetyl sulphanilamide in goat no. 45 during diodone blockade.

From Table 3, which shows the results from the experiments with N⁴-acetyl sulphadimidine, can be seen that clearance of N⁴-acetyl sulphadimidine is 1.3—2 times higher than clearance of creatinine (column 9). On an average $87 \pm 2 \%$ (m. \pm s.e.m.) of N⁴-acetyl sulphadimidine is bound to the plasma proteins. This high protein-binding leads to a clearance of non-protein-bound N⁴-acetyl sulphadimidine 9—15 times higher than the creatinine clearance (last column). As can be seen from the table the clearance of N⁴-acetyl sulphadimidine is independent of the plasma concentration in an interval from 19 to 71 µg N⁴-acetyl sulphadimidine per ml.

In 2 experiments the renal clearance of N⁴-acetyl sulphadimidine was determined during simultaneous loading with diodone, and these results are shown in Table 4. From the table appears that loading with diodone markedly (60—70 %) diminishes the clearance of N⁴-acetyl sulphadimidine, although the ratio between clearance of non-protein-bound N⁴-acetyl sulphadimidine and clearance of creatinine still is higher than 1.

DISCUSSION

Previous experiments have shown that sulphanilamide and sulphadimidine are acetylated in goats, and in the present work it is shown that the N⁴-acetyl derivatives of these 2 sulphon-

						•			
					Clear	ance ml/mfn. b.wt.	/10 kg	Ratio clearance of	Ratio clearance of
Goat no.	Urine flow ml/min.	Urine pH	N ¹ -acetylated sulphonamide in blood	N*-acetylated sulphonamide in ultra-	N ⁴ -ace sulphor	tylated 1amide in	crea- tinine	N ⁴ -acetylated sulphonamide	N ⁴ -acetylated sulphonamide
	minmax.	minmax.	plasma ug/ml	filtrate of blood plasma	blood plasma	ultra- filtrate		in blood plasma	in ultrafiltrate of blood plasma
			ò	hg/ml		of blood plasma		clearance of creatinine	clearance of creatinine
43	1.2—1.7	7.57.8	18.6	2.8	49.3	330.7	35.9	1.4	9.2
47	1.4 - 3.7	6.7 - 6.7	20.2	2.3	31.2	271.6	27.3	1.5	10.0
47	1.1 - 3.3	7.27.6	24.0	3.5	44.0	301.0	20.7	2.1	14.5
40	2.7 - 4.0	7.6-8.0	40.7	3.7	43.1	468.0	32.2	1.3	14.5
43	1.6 - 1.8	7.9-8.0	58.3	5.1	44.9	510.2	34.2	1.3	15.0
47	1.7 - 2.6	6.9 - 8.1	71.4	13.6	44.0	231.5	21.3	2.1	10.9
n. H	.e.m.				43 ± 3	352 ± 46	29 ± 3	1.6 ± 0.2	12.4 ± 1.1

T a ble 3. Clearance of creatinine and N^4 -acetyl sulphadimidine.

Renal excretion in goats

193

Goat	Obser-	Conc. of N ⁴ -acetyl sulphon- amide	Clearance ml/min./10 kg b.wt.			Ratio	Ratio
no.	vation no.		N⁴-a sulphor	acetyl 1amide in	crea- tinine	N4-acetyl sulphonamide in blood plasma clearance of creatinine	N ⁴ -acetyl sulph- onamide in ultrafiltrate of blood plasma clearance of creatinine
		in blood	blood	ultra- filtrate			
		µg/ml	plasma fil of l pla	of blood plasma			
43	1	20.7	47.2	316.8	33.3	1.41	9.5
	2	18.4	48.9	328.2	35.0	1.39	9.4
	3	16.6	51.7	347.0	39.4	1.31	8.8
	Diodone						
	4	35.6	14.2	95.3	30.2	0.47	3.2
	5	36.6	14.3	96.0	25.0	0.57	3.8
	6	36.3	14.3	96.0	23.4	0.61	4.1
47	1	22.5	31.5	273.9	27.3	1.15	10.0
	2	19.7	31.5	269.6	28.9	1.08	9.3
	3	18.4	31.2	271.3	25.6	1.21	10.6
	Diodone						
	4	28.8	8.2	71.3	26.6	0.30	2.7
	5	30.9	8.8	76.5	25.4	0.34	3.0
	6	31.9	9.2	80.0	23.8	0.38	3.4

Table 4. Clearance of N⁴-acetyl sulphadimidine in 2 goats during diodone blockade.

amides are also deacetylated in vivo. Schröder (1973) reported that N⁴-acetyl sulphapyridine is deacetylated to the same extent in man, while Funk et al. (1970) found that N⁴-acetyl sulphathiazole and N⁴-acetyl chlorsulphisomidine were deacetylated only to a small extent in rats. Contrary to these observations Gelber et al. (1971) reported that N⁴-acetyl sulphadimidine was not deacetylated in man.

The binding of N⁴-acetyl sulphanilamide (28 %) and N⁴-acetyl sulphadimidine (87 %) to the plasma proteins is higher than that of sulphanilamide (20 %) and sulphadimidine $(66 \%) (J \phi r-gensen \& Rasmussen 1972)$. The determination of the proteinbinding was carried out by the same technique in both cases. From experiments with sulphanilamide, sulphathiazole, and sulphisomezole in dogs *Arita et al.* (1972) also found a higher protein-binding of the N⁴-acetyl derivatives than of the parent compounds. Similar results are obtained with several sulphonamides and their N⁴-acetyl derivatives added to human plasma (*Rieder* 1963). Salvi & Plancher (1963) and Walker (1970), however, reported that N⁴-acetyl sulphamethoxypyridazien and N⁴-acetyl sulphadimethoxine in man were bound to the plasma proteins to the same extent as the parent compounds.

As it is only the non-protein-bound fraction of the drugs which can filtrate through the glomeruli of the kidney, the renal excretion has been estimated on the basis of clearance of the non-protein-bound sulphonamide, and this clearance has been compared with the clearance of creatinine.

The experiments showed that the clearance of creatinine was 23-29 ml/min./10 kg b.wt., a result which is in accordance with previously reported values for goats (*Jørgensen & Rasmussen*). The clearance of non-protein-bound N⁴-acetyl sulphanilamide $(39 \pm 2 \text{ ml/min./10} \text{ kg b.wt.})$ is higher than the clearance of creatinine, and this indicates that active tubular secretion is involved in the renal excretion of this compound. This observation is further confirmed in the experiments where diodone and N⁴-acetyl sulphanilamide were infused simultaneously, resulting in a complete blockade of the active tubular secretion of N⁴-acetyl sulphanilamide (Table 2). These results show that N⁴-acetyl sulphanilamide is excreted by filtration and active tubular secretion, while filtration and reabsorption are involved in the renal handling of the parent compound (clearance: $12 \pm 1 \text{ ml/min./10}$ kg b.wt.) (*Jørgensen & Rasmussen*).

The ratio between clearance of non-protein-bound N⁴-acetyl sulphadimidine and clearance of creatinine varies between 9 and 15. Although the ratio is considerably reduced during loading with diodone it is still higher than 1, which means that the active tubular secretion of N⁴-acetyl sulphadimidine was not entirely blocked by the diodone infusion. The reason might be that the concentration of diodone in plasma has not been high enough to give a complete blockade of the active tubular secretion of N⁴-acetyl sulphadimidine although the same dosage entirely inhibited the active tubular secretion of N4-acetyl sulphanilamide. The experiments indicate that N⁴-acetyl sulphadimidine is excreted by filtration and active tubular secretion while reabsorption was not shown to take place. The renal excretion of N⁴-acetyl sulphadimidine (clearance: 352 ± 46 ml/min./10 kg b.wt.) is much faster than that of the parent compound (clearance: 33 ± 2 ml/min./10 kg b.wt.) (Jørgensen & Rasmussen).

REFERENCES

- Arita, T., R. Hori, M. Takada, S. Abuzu & A. Misawa: Transformation and excretion of drugs in biological systems. VII. Effect of biotransformation on renal excretion of sulfonamides. Chem. pharm. Bull. 1972, 20, 570-580.
- Bratton, A. C. & E. K. Marshall: A new coupling component for sulphanilamide determination. J. biol. Chem. 1939, 128, 537-550.
- Böhni, E., B. Fust, J. Rieder, K. Schaerer & L. Havas: Comparative toxicological, chemotherapeutic and pharmacokinetic studies with sulphormethoxine and other sulphonamides in animals and man. Chemotherapia (Basel) 1969, 14, 195-226.
- Dalgaard-Mikkelsen, Sv. & E. Poulsen: Renal excretion of sulphathiazole and sulphadimidine in pigs. Acta pharmacol. (Kbh.) 1956, 12, 233-239.
- Fischer, E.: Renal excretion of sulphadimidine in normal and uræmic subjects. Lancet 1972, *II*, 210-212.
- Frisk, A. R.: Sulfanilamide derivatives. Chemotherapeutic evaluation of N⁴-substituted sulfanilamides. Acta med. scand. 1943, Suppl 142, 88—106.
- Funk, K. F., W. Oelssner & F. P. Meyer: Resorption und Elimination N⁴-substituerter Sulfanilamide bei Ratten. (Resorption and elimination of N⁴-substituted sulphanilamides in rats). Pharmazie 1970, 25, 554—556.
- Gelber, R., J. H. Peters, G. R. Gordon, A. J. Ghazko & L. Levy: The polymorphic acetylation of dapsone in man. Clin. Pharmacol. Ther. 1971, 12, 225-238.
- Jørgensen, S. Tue & Folke Rasmussen: Renal ekskretion af sulfanilamid, sulfadimidin, sulfadoxin og sulfamethoxazol hos geder. (Renal excretion of sulphanilamide, sulphadimidine, sulphadoxine and sulphamethoxazole in goats). Nord. Vet.-Med. 1972, 24, 601-611.
- Loomis, T. A., G. F. Koeph & R. S. Hubbard: The excretion of sulfanilamide and acetylsulfanilamide by the human kidney. Amer. J. Physiol. 1944, 141, 158—163.
- Madsen, S. T. & P. F. Iversen: Metabolic problems during treatment with longacting sulfonamides. III Int. Congr. Chemotherapy, (Stuttgart July 1963), 1964, 644—648.
- Nielsen, P.: The metabolism of four sulphonamides in cows. Biochem. J. 1973, 136, 1039-1045.
- Poulsen, E.: Renale clearance-undersøgelser hos køer. (Renal clearance in cows). København 1956, p. 42.
- Reber, H., G. Rutishauser & H. Thölen: Clearance-Untersuchungen am Menschen mit Sulfamethoxazol und Sulforthodimethoxin. (Sulphamethoxazole and sulphorthodimethoxin clearance in man). HI Int. Congr. Chemotherapy (Stuttgart July 1963), 1964, 648— 653.
- Rieder, J.: Physikalisch-chemische und biologische Untersuchungen an Sulfonamiden (Physico-chemical and biological studies on sulfonamides). Arzneimittel-Forsch. 1963, 13, 81-88.

- Salvi, G. & A. C. Plancher: Nierenclearance und Serumproteinbindung von Sulfamethoxypyridazin und N⁴-Acetylsulfamethoxypyridazin. (Renal clearance and binding of sulphamethoxypyridazine and N⁴-acetyl sulphamethoxypyridazine to serum proteins). Arzneimittel-Forsch. 1963, 13, 343-344.
- Schröder, H.: Deacetylation of acetylsulphapyridine in man. J. Pharm. Pharmacol. 1973, 25, 591-592.
- Volini, I. F., G. M. Engbring & M. A. Schorsch: Absorption, excretion and distribution of sulfamethazine. Arch. intern. Med. 1945, 75, 168-174.
- Walker, S. R.: The influence of proteinbinding on the excretion of some sulphanilamidopyrimidines in man. J. Pharm. Pharmacol. 1970, 22, 574—577.

SAMMENDRAG

Renal ekskretion of N^4 -acetylsulfanilamid og N^4 -acetylsulfadimidin hos geder.

Den renale udskillelse af N⁴-acetylsulfanilamid og N⁴-acetylsulfadimidin er undersøgt ved 19 forsøg på 6 geder. Begge derivaterne deacetyleres in vivo omend kun i mindre omfang. Undersøgelserne viste endvidere, at begge N⁴-acetylderivaterne bindes til plasmaproteinerne i større udstrækning end de tilsvarende ikke-acetylerede forbindelser. Udskillelsen af de N⁴-acetylerede sulfonamider sammenlignes med udskillelsen af kreatinin, og det vises, at den ikke-proteinbundne del udskilles ved filtration og aktiv tubular sekretion. Den renale udskillelse af N⁴-acetylereire er større end udskillelsen af de tilsvarende ikke-acetylerede forbindelser.

(Received November 21, 1973).

Reprints may be requested from: Folke Rasmussen, Institute of Pharmacology and Toxicology, Royal Veterinary and Agricultural University, Bülowsvej 13, DK-1870 Copenhagen V, Denmark.