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Paradigm shift in the diagnosis of peste des 
petits ruminants: scoping review
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Abstract 

Peste des petits ruminants virus causes a highly contagious disease, which poses enormous economic losses in domes-
tic animals and threatens the conservation of wild herbivores. Diagnosis remains a cornerstone to the Peste des 
petits ruminants Global Control and Eradication Strategy, an initiative of the World Organisation for Animal Health 
and the Food and Agriculture Organisation. The present review presents the peste des petits ruminants diagnostic 
landscape, including the practicality of commercially available diagnostic tools, prototype tests and opportunities for 
new technologies. The most common peste des petits ruminants diagnostic tools include; agar gel immunodiffusion, 
counter-immunoelectrophoresis, enzyme-linked immunosorbent assays, reverse transcription polymerase chain reac-
tion either gel-based or real-time, reverse transcription loop-mediated isothermal amplification, reverse transcription 
recombinase polymerase amplification assays, immunochromatographic lateral flow devices, luciferase immunopre-
cipitation system and pseudotype-based assays. These tests vary in their technical demands, but all require a labora-
tory with exception of immunochromatographic lateral flow and possibly reverse transcription loop-mediated iso-
thermal amplification and reverse transcription recombinase polymerase amplification assays. Thus, we are proposing 
an efficient integration of diagnostic tests for rapid and correct identification of peste des petits ruminants in endemic 
zones and to rapidly confirm outbreaks. Deployment of pen-side tests will improve diagnostic capacity in extremely 
remote settings and susceptible wildlife ecosystems, where transportation of clinical samples in the optimum cold 
chain is unreliable.
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Background
Peste des petits ruminants virus (PPRV) causes an acute 
and highly contagious infection, which can cause sig-
nificant socio-economic losses in domestic animals and 
threatens the conservation of wild herbivores. The PPRV 
belongs to the genus Morbillivirus of the family Para-
myxoviridae [1, 2], which includes eradicated Rinderpest 
virus, Measles virus, Canine distemper virus, Phocine 
distemper virus, Cetacean and Feline morbilliviruses 
[3]. Rapid field diagnostics against rinderpest became 

available in final phases of the eradication process, but 
were never really tested within livestock whilst proving 
valuable in wildlife environment [4–6]. The rinderpest 
eradication in 2011 provided the pathway and the pos-
sibility of peste des petits ruminants (PPR) eradication 
given the close phylogeny of these viruses, availability 
of a reliable and effective vaccine against PPR and sen-
sitive and specific diagnostic tests [7]. PPR most likely 
emerged in the early part of the twentieth century whilst 
its presence was masked by ongoing rinderpest epidem-
ics, which also affected small stocks and where immunity 
was cross protective [8]. Based on phylo-geographical 
analysis, geographic origins of the most recent common 
ancestor of PPRV lineages I, II, and III were proposed to 
originate from Africa whilst lineage IV might have origi-
nated from India [9]. PPRV has continued to expand its 
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geographic boundaries, reaching regions previously 
not infected and putting hundreds of millions of both 
domestic small ruminants and wildlife at risk of infec-
tion. However, the occurrence of PPRV in previously 
uninfected regions, together with the mixing of lineages 
in endemically infected countries, highlights the dynamic 
and transboundary nature of this disease [10–12]. The 
expansion of PPR range has been known for many dec-
ades but it has taken a considerable time to raise interna-
tional interest and to bring PPR to the status of a priority 
disease for livelihood and food security. PPR was finally 
included in the Global Framework for the Progressive 
Control of Transboundary Animal Diseases (GF-TADs), 
an initiative of the World Organisation for Animal Health 
(OIE) and the Food and Agriculture Organisation (FAO) 
of the United Nations [13, 14]. The annual global impacts 
of PPR was in 2017 estimated at between US$1.4 and 
$2.1 billion [13]. However, it is estimated that an invest-
ment of US$ 7.1 billion on global PPR eradication could 
be recovered within 5 years of successful eradication [13]. 
Some academics believe that the actual cost of eradica-
tion could be much lower than this [15], but unfortu-
nately the tardiness of the response to its expansion, 
increases the likely cost by the day.

Reported PPR outbreaks and infection studies in cap-
tive and wild ruminants have extended the known spec-
trum of potentially infected species to include most 
bovidae and suidae. In 2014, there were warnings of the 
risk of PPR infection of the saiga antelope (Saiga tatarica 
mongolica), which is a critically endangered species in 
central Asia [16], and since then there has been no proper 
actions to protect susceptible wild ruminants population 
from PPR outbreaks. This was followed by PPR epidemic 
in the small surviving population of a sub-species of 
saiga with extinction of more than half of the population 
[17]. Consequently, the saiga catastrophes emphasized 

the failure of PPR eradication strategies in consider-
ing wildlife and possible virus spill over from livestock. 
From 2014 to 2016, more than 1000 wild goats (Capra 
aegagrus) and sheep (Ovis orientalis) in the northern 
and central provinces of Iran died from PPRV infection 
[18]. Transmission of PPRV from infected goats to cattle 
has also been reported [19], and PPRV antigen has been 
detected in camels [20] and even companion animals, 
in particular dogs [21]. Goats and sheep are the mainte-
nance hosts and the other hosts are apparently consid-
ered as spill over without any other reservoir populations 
confirmed.

Sheep and goats are vital for more than 330 million 
poor subsistence and marginal farmers in Africa and 
Asia a home to more than 1.7 billion sheep and goats, 
where over 80% of the world’s small ruminants occur 
and here PPR causes food insecurity and contributes to 
poverty [13, 22]. The clinical signs elicited by PPRV may 
vary depending on the breed of the affected animal spe-
cies and/or the strain of virus [23, 24]. Besides, other 
factors such as the resilience of the population, nutri-
tion, co-infection and other stressors contribute to the 
pathogenesis of PPRV infection. The severity of disease 
depends on the immune status of the animal; for exam-
ple, newborn animals become susceptible to PPRV infec-
tion at three to 4 months of age following natural decline 
in colostral antibodies. Early and accurate diagnosis of 
PPRV infection is important for prompt control and this 
can be facilitated by pen-side diagnostics (Table 1). The 
availability of simple cost-effective pen-side diagnostics 
and laboratory based tests would aid in the prevention 
and control of PPR in low-income countries. However, 
these tests should be performed in reference with OIE 
prescribed tests for confirmation of clinical cases using 
immunocapture enzyme-linked immunosorbent assay 
(IC-ELISA) and reverse transcription polymerase chain 

Table 1  Diagnostic value of  commercially available field-deployable diagnostic tools and  pen-side prototype tests 
for PPR diagnosis

Diagnostic tests Target (s) Merits Limitations Detection limit References

Immunochromatography 
lateral flow test

H and N proteins Very rapid and pen-side 
test

Less sensitive than PCR 103 to 104 TCID50 [26]

Quantum dots lateral flow PPRV IgG antibodies Ultrasensitive and field test Cannot detect active case Specificity 99.47%, sensitiv-
ity 97.67%

[27]

One-step RT-LAMP M gene Rapid and easy to perform Not a field-level diagnostic 1.41 × 10−4 ng total RNA 
per assay

[28]

Two-step RT-LAMP N gene Rapid and pen-side test Require six primers 100% specificity and 
sensitivity

[28–30]

Recombinase polymerase 
amplification assay

N gene Rapid compared to RT-
LAMP

Less sensitive compared to 
RT-PCR

Sensitivity 90% and speci-
ficity100%

[31, 32]

Oxford nanopore MinION 
sequencers

Viral genome Rapid Prone to high host nucleic 
acids

[33, 34]
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reaction (RT-PCR) and for certification of population 
freedom from infection by competitive enzyme-linked 
immunosorbent assay (C-ELISA) and virus neutrali-
zation test (VNT) [25] (Table 2). Thus, the use of auto-
mated assays that do not require supplementary multiple 
reagents and lateral flow diagnostic strips technologies 
based on low cost immunoreagents such as nanobodies 
may accelerate the development of powerful diagnostic 
assays. In addition, lack of validated tests amongst wild-
life species creates uncertainties in the interpretation of 
surveillance data.

Search strategy and selection criteria
The MEDLINE (PubMed) and Google scholar search 
machines were used as source of the peer-reviewed arti-
cles included in this review. The articles were selected 
using keywords combined by Boolean operators (peste 
des petits ruminants OR PPR OR Peste des petits rumi-
nants virus OR PPRV OR diagnosis OR diagnostic*AND 
(PPR diagnosis). All searches on PPR diagnosis were per-
formed in 2 years. Only 142 articles out of 4782 written 
in English from the first description of PPR in 1942 met 
inclusion criteria as shown in PRISMA flow diagram 
(Fig. 1).

Susceptible animal species and transmission of peste des 
petits ruminants
PPRV infects domestic as well as wild ruminants with 
goats and sheep being the most susceptible domestic 
animals and which also serve as primary hosts. The dis-
ease has been reported to be more severe in goats than in 
sheep, although this claim still lacks scientific proof [35]. 
Transmission of PPRV occurs through direct contact 
with infected animals, inhalation of aerosol (expectorate), 
or contacts with lacrimal secretions, nasal exudates, 
saliva and faeces.

Studies have shown that both camels and suids are 
susceptible to PPRV infection and develop clinical dis-
ease [36, 37]. The role of wildlife animals and domestic 

Artiodactyls in the epidemiology of PPR is unknown or 
insufficiently understood [38]. Infections of various wild-
life species including African buffalo (Syncerus caffer) 
and many antelope species occur apparently subclini-
cal [38, 39] but the only confirmed reports of disease in 
African wildlife have occurred under captive or semi-free 
range conditions [40, 41]. According to previous stud-
ies, animals that recover from PPRV infections develop 
life-long immunity [42, 43]. Because of its immunosup-
pressive effect, PPRV infections are usually accompanied 
by secondary infections thereby complicating clinical 
diagnosis.

Clinical manifestation
It takes 3–4  days before onset of clinical signs. During 
this incubation period, PPRV replicates in the drain-
ing lymph nodes of the oropharynx followed by spread-
ing (via blood and lymph) to other tissues and organs 
including the lungs resulting in a primary viral pneumo-
nia. The acute stage of disease is characterised by high 

Table 2  OIE diagnostic methods that  are recommended (+++) and  suitable (++) for  confirmation of  clinical cases 
and certifying freedom from peste des petits ruminants

Diagnostic method Purpose

Target Case confirmation Population freedom Immune status International 
trade

IC- ELISA Viral protein +++
RT-PCR Viral genome +++
Virus isolation PPRV ++
VNT Antibodies +++ +++ +++
C-ELISA Antibodies ++ +++

Relevant potential articles identified through MEDLINE 
(PubMed) and Google scholar search machines (4782)

Full text retrieved for screening (1240)

Full text for eligibility (483)

Studies included for review (139)

Records excluded (3542) due to the following 
reasons: Duplicates (1258); screened title and 
abstracts (2284)

Records excluded (757) on the basis of: No 
reference on the pattern of PPR diagnosis (549); 
Reviews (156); Vaccines (52)

Records excluded (344) on basis of; PPR 
economic losses (13); prevalence (277); 
Metagenomics (34); Pathogenesis (20)

Fig. 1  Flow diagram for the review process
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body temperature (39.5 to 41  °C) which may last for 
3–5 days [44]. Other signs are depression, anorexia, dry 
muzzle, excessive salivation, lachrymal discharges and 
serous nasal discharge, which gradually turn mucopu-
rulent (Fig.  2). The affected animals develop papules in 
the oral cavity, which become erosive and necrotic. In 
severe cases, these necrotic lesions occur concurrently 
with fibrin deposits on the tongue [24, 35, 45]. In the later 
stages, there is diarrhoea and cough with labored abdom-
inal breathing. Terminally, the animal may become dysp-
noeic, progressively lose weight and eventually dies. 
In mild infections, self-cure occurs after 10–15  days of 
infection. Protective immunity responsible for self-recov-
ery is attributed to infection-induced antibodies against 
the haemagglutinin (H) and fusion (F) proteins [46, 47], 
although most of the neutralizing antibodies are directed 
against the H protein [48]. Nucleoprotein (N) is the most 
abundantly transcribed gene in the host cells. For this 
reason, the H and N proteins are the two most preferred 
PPRV targets for the development of vaccine and immu-
nodiagnostics, respectively [49, 50].

Epidemiology of peste des petits ruminants
The development of specific and sensitive molecular and 
serological techniques have improved the diagnostic 
precision for PPR since not all cases of PPR can be dis-
tinguish from rinderpest, pneumonic pasteurellosis and 
contagious caprine pleuropneumonia, based on clini-
cal sigs [4]. Based on previous similar outbreaks of the 

disease in Senegal and Guinea in 1871 and 1927, respec-
tively, it was believed that PPR might have been exist-
ing much earlier than previously thought [9, 10]. The 
disease spread subsequently to the neighbouring Afri-
can countries like Nigeria and Ghana [51]. Until early 
1980s, definite outbreaks of PPR were reported from dif-
ferent parts of West Africa [42, 52] and it was regarded 
as a disease of West African countries. However, it was 
later realised that the disease spread beyond West Africa 
with cases being recorded in Sudan [53]. In the north-
ern part of Africa, PPR was reported in Morocco in 2008 
and later Egypt, Algeria and Tunisia have also reported 
PPR [54–56]. Globally, PPR affects about 70 countries in 
Africa, Asia and the Middle East [57]. Out of 70 coun-
tries that have either reported PPR infection to the OIE 
or are suspected of being infected, more than 60% are in 
Africa (except southern Africa). Other infected countries 
are in Asia (South-East Asia, China, South Asia and Cen-
tral Asia/West Eurasia including Turkey) and the Mid-
dle East [13, 14, 57]. PPRV lineages I and II have been 
found exclusively in western and central Africa; lineage 
III is common to eastern Africa and the southern part of 
the Middle East. Lineage IV is found in Southeast Asia, 
Middle East and North Africa [23, 44, 58–60]. Incursions 
of PPRV lineages have been also reported, for instance 
lineage II and IV were found in East Africa and line-
age IV in Ethiopia [12, 61–64]. Recent outbreaks of PPR 
in Bulgaria, Georgia and the Marmara region in Turkey 
increase the threat to Europe [65–67]. The spread of PPR 
beyond its usual boundaries is attributed to cross-border 
movements of animals and animal products, which are 
being promoted by trade, nomadic lifestyle, tourism and 
migration of wild animals [9, 59, 68].

PRRV as a target for diagnostics and vaccine development
Like other members of the genus Morbillivirus, PRRV 
is enveloped, pleomorphic with the particles diameter 
ranging from 400 to 500 nm [1]. The genome is a linear, 
non-segmented negative sense single stranded RNA, 
which is15,948 nucleotides long. There are six genes i.e. 
3′-N, P, M, F, H, L-5′, which constitute the genome. Each 
of these genes codes for a distinct structural protein and 
each of these proteins bear the acronym of the respec-
tive gene of origin; nucleoprotein (N), phosphoprotein 
(P), matrix protein (M), fusion protein (F), haemaggluti-
nin protein (H) and large polymerase protein (L). Besides 
coding for the phosphoprotein, the P gene also codes for 
two non-structural proteins designated C and V. The C 
and V proteins are generated through alternative start 
codons (leaky scanning) and RNA editing, respectively 
[69]. It has been shown that the N protein is abundant 
in infected cells and highly immunogenic. On the other 
hand, given its abundance and antigenic stability, the N 

Fig. 2  Clinical signs in goats and sheep confirmed with peste des 
petits ruminants virus infection in a farm located in Tanga, Tanzania. 
Nasal discharges in a a sheep and b a goat, c dried-up purulent nasal 
discharges in a goat, and d diarrhoea in a sheep



Page 5 of 14Kinimi et al. Acta Vet Scand            (2020) 62:7 

protein has been a preferred candidate antigen for devel-
opment of PPRV immunodiagnostics [70, 71]. The P 
protein is a co-factor for viral replication and transcrip-
tion in conjunction with the L protein, which is an RNA-
dependent RNA polymerase. The M constitutes the inner 
coat of the viral envelope and acts as a bridge connecting 
the surface glycoproteins (F and H) to the ribonucleopro-
tein core. The H protein mediates attachment of virions 
to the host receptors whilst F protein induces fusion of 
the viral membrane with the host cell membrane in order 
to enter host cells [70]. Then on-structural proteins play 
several functions including viral RNA synthesis, viru-
lence determination and modulation of RNA-dependent 
RNA polymerase activity and blockade of interferon 
signaling.

PPRV exists as a single serotype, but is divided into 
four distinct genetic lineages [72]. The development of 
necessary tools for PPRV control, including vaccines and 
diagnostics, greatly relied on detailed insights into the 
PPRV genome and protein constituents; and on this same 
basis the virus is now classified into lineages. Structur-
ally, the N protein is divided into four regions I, II, III and 
IV of amino acids sequences, 1–120, 121–145, 146–398 
and 421–525, respectively [49]. Owing to high immuno-
genicity of regions I and II, these could be targeted for 
improvement and development of immunoassays. On 
the other hand, based on H protein mapping of the func-
tional domain, two regions are the most immuno-dom-
inant epitopes (263–368 and 539–609) and are diverse 
among all the members of Morbilliviruses with signifi-
cant potential for development of a DIVA vaccine that 
could differentiate infected from vaccinated animals [47].

Tentative diagnosis
Presumptive diagnosis of PPR is based on clinical signs 
presented in living animals and postmortem lesions. 
Such diagnosis in PPRV endemic zones could play an 
important role in early warning in disease-symptomatic 
surveillance when coupled to digital diagnostic technol-
ogy [73–75]. However, definitive laboratory diagnosis 
of PPR is the key to achieving accurate result because 
PPRV infections manifest similar clinical picture with 
other diseases such as bluetongue, contagious caprine 
pleuropneumonia, capripox and foot-and-mouth dis-
ease [4, 23, 76].

Virus isolation
PRRV isolation using primary cells (bovine, ovine and 
caprine kidney and lung epithelial cells) requires multi-
ple, sequential blind passages and takes up to weeks in 
culture before the development of any cytopathic effect 
[42, 77]. The quality of primary cells is not guaranteed 
due to the presence of endogenous virus and there is 
considerable batch to batch variation (Table  3). The 
infection efficiency of PPRV in primary cultures is up 
to 100–1000 times less than that of the lymphoid cells 
expressing signaling lymphocyte activation molecule 
(SLAM) [78, 79]. Thus, non-lymphoid cells express-
ing this recombinant protein, are used to isolate and 
propagate PPRV efficiently [79]. However, transformed 
marmoset B-lymphoblastoid cells (B95a) derived from 
Epstein-Barr virus, are more sensitive and support bet-
ter growth of PPRV lineage IV compared to Vero cells. 
Virus isolation is expensive and time consuming, thus, 
it cannot be deployed for routine diagnostic, but it can 
only be used as gold standard for further disease confir-
mation and in research studies. Thus, establishment of 
cell lines with high infection efficiency to PPRV will be 

Table 3  Progress towards  the  development of  suitable platforms for  PPRV isolation, maintenance and  production 
of biosafe antigen

Platform Strength (s) Limitation (s) References

Primary cell culture Cheap and easily accessible Variations in batches and low quality due to the pres-
ence of endogenous viruses

[53, 77, 80–82]

Vero cells Easy to maintain in culture Low infection efficiency compared to lymphoid cells [42, 81, 83]

Madin-Darby bovine kidney 
epithelial cell line (MDBK)

Suitable for PPRV isolation. Requires multiple sequential blind passages for visible 
cytopathic effect

[84]

MDBK-nectin-4 cell line Rapid for clinical isolation of PPRV Only limited to Nectin-4 and high overhead cost [85, 86]

Baby hamster kidney (BHK-21) Suitable for growth kinetics of PPRV PPRV replicates at relatively lower titers in BHK-21 cells [87, 88]

Vero-SLAM Highly efficient for PPRV isolation Prone to fungal and bacterial contaminations [79, 89, 90]

Vero dog SLAM-L protein (VDS-L) Produces biosafe antigens in low level 
biocontainment

Prone to fungal and bacterial contaminations [91]

Alpine goats Suitable for in vivo pathological studies Require high level containment [92]



Page 6 of 14Kinimi et al. Acta Vet Scand            (2020) 62:7 

of help in confirming viable PPRV in the last phase of 
global PPRV eradication (Table 3).

Paradigm shift in peste des petits ruminants diagnostic 
assays
For PPR diagnosis, a plethora of serological and 
molecular assays have been developed with continu-
ous on-going improvements. The assays detect PPRV 
antigens, nucleic acid or PPRV induced antibod-
ies [93]. These assays include agar gel immunodiffu-
sion (AGID), counter-immunoelectrophoresis (CIE), 
enzyme linked-immunosorbent assay (ELISA),reverse 

transcription polymerase chain reaction (RT-PCR) 
either gel-based or real time, or reverse transcription 
loop mediated isothermal amplification (RT-LAMP), 
reverse transcription recombinase polymerase ampli-
fication assays (RT-PRA), immunochromatographic 
lateral flow devices (IC-LFDs), luciferase immuno-
precipitation system (LIPS) and pseudotype-based 
assays. They vary in their technical demands, but all 
require a laboratory with exception of IC-LFDs, and 
possibly RT-LAMP and RT-RPA (Table  4). The AGID 
and CIE assays are less sensitive at the early stages of 
infection where antigen levels are below detectable 

Table 4  Demonstration of  peste des petits ruminants diagnostic spectrum and  prototype assays undergoing 
development

Diagnostic technique Reliability References

Strengths Limitation (s)

Tentative diagnosis Less costly Unreliable due to presence of PPR related 
diseases

[73, 109]

Virus culture and isolation Discerns active infections High overhead cost [77, 79, 110]

Virus neutralisation test (VNT) It is specific and able to discern PPRV 
exposure

Cannot be used as DIVA test [53, 111]

Agar gel immunodiffusion (AGID) Simple and cheap Low sensitive and is affected by prozone 
effect

[94, 112]

Counter-immunoelectrophoresis (CIE) The test is fast, simple and cheap Not free from prozone effect [94, 112]

Enzyme-linked immunosorbent assays 
(ELISA)

Suitable for routine diagnosis on large 
scale

Low sensitive compared to PCR [95, 96, 113–115]

Haemagglutination (HA) test Simple to perform and it is inexpensive Non-specific [116–118]

Haemagglutination inhibition (HAI) test Fast and relatively easy to perform and 
easy to standardise

Works best with human blood group‘‘O’’ [119, 120]

Immuno-peroxidase test Test is easy to perform Test is less sensitive compared to RT-PCR [109]

Fluorescent antibody test (FAT) The test is highly specific and able to 
detect active infection

High overhead cost and impracticable in 
the field setting

[116]

Immunofiltration test Pen-side test and serves to screen large 
sample size

Less sensitive compared to ELISA [105]

Immunochromatographic test Rapid and does not require instrumenta-
tion

Less sensitive compared to IC-ELISA [26]

Luciferase immunoprecipitation system 
tests

Highly sensitive for sero-surveillance Not DIVA test [121]

Pseudotype-based assays No need of sophisticated facility Technically demanding test [122]

Quantum dots-lateral flow immunoassay 
strips

Very rapid test and highly sensitive Limited to previous exposure [27]

Surface Plasmon resonance-biosensor Ultrasensitive diagnostic tools Expensive and technically demanding [123, 124]

Reverse transcription polymerase chain 
reaction (PCR)

Highly sensitive and accurate High maintenance cost [97, 125]

Reverse transcription loop-mediated 
isothermal amplification

Highly sensitive, cheap and rapid for pen-
side test

Requires many primers [29]

Microarray It allows multiple virus screening Less sensitive compared to PCR [21, 126]

Reverse transcription recombinase poly-
merase amplification

Point of care diagnostics following minia-
turisation

Sensitivity is low compared to RT-PCR [32, 127]

Sequencing platforms Highly accurate for aetiologic agents 
confirmation

Costly and require expertise [128–130]

Oxford nanopore MinION sequencers Rapid and accurate for genomic surveil-
lance in field settings

Requires extra efforts for monitoring signal 
to noise ratio in base detection

[33, 129]
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threshold and could only detect 42.6% of ante-mor-
tem and necropsy specimens [94]. Thus, progress was 
made to replace them with assays that are more sen-
sitive and specific, such as ELISA, immunochromato-
graphic assays and nucleic acid-based assays [95–98]. 
ELISA employs an enzyme–substrate reaction for 
the detection of antigen–antibody interactions. They 
are suitable for screening large sample sizes and bet-
ter documentation of evidence-based clinical sam-
ples status. Later on, a high sensitive immunocapture 
enzyme-linked immunosorbent assay (IC-ELISA) was 
developed based on conventional monoclonal antibod-
ies (MAbs)and it demonstrated diagnostic sensitivity 
of 100.6 TCID50 [74, 95, 99]. Again, sandwich-ELISA 
and dot-ELISA based on conventional antibodies were 
developed and they have been in use since 2002. Dot-
ELISA when was compared for its relative diagnostic 
sensitivity and specificity with routinely used sand-
wich-ELISA were 82% and 91% respectively, for the 
diagnosis of PPR [100]. However, dot-ELISA could 
serve as simple field test to screen clinical samples 
from suspected PPR cases. In comparison with com-
mercial IC-ELISA kit, sandwich ELISA exhibited 88.9% 
and 92.8% relative diagnostic sensitivity and diagnos-
tic specificity, respectively [101]. Although the sensi-
tivity of the dot-ELISA is lower, it can also be used in 
combination with other assays such as LIPS, pseudo-
type-based assays and nucleic acid-based tests in lab-
oratories where resources are limited. The gel based 
RT-PCR assays serve to detect viral nucleic acid with 
high sensitivity and accuracy regardless of being labor 
intensive, time-consuming and prone to high risk of 
cross-contamination. Alternatively, real-time RT-PCR 
assays detect and quantify PPRV present in clinical 
samples in real time [102]. The high cost of the equip-
ment and technical demands impede its utility in low-
income countries. In low-income countries, potent, 
inexpensive field-deployable diagnostic tools are pros-
pect for use in the prevention and control measures of 
PPR. Recently developed lateral flow devices based on 
conventional antibodies have rejuvenated hopes in the 
least developed countries for rapid detection of PPRV 
[6, 26]. Despite the pen-side versatility of some lateral 
flow devices, their sensitivities were not able to detect 
PPRV in clinical samples with a low virus load as sen-
sitively when compared to IC-ELISA, LIPS and nucleic 
acid-based diagnostic tools. Detection of serum anti-
body is also not effective because all assays based on 
detection of PPRV antibody could not differentiate 
infected animals from vaccinated animals. Recombi-
nant antigen-based assays are of value during post vac-
cination evaluation and in the last phase of eradication 
where free PPRV diagnostic tools are required [96, 

103–108]. On the other hand, a battery of potential 
field-based diagnostic tools have been developed and 
introduced for use in the diagnosis of PPR (Table 4).

Recent advances in peste des petits ruminants 
field‑deployable diagnostic assays
Immunochromatographic lateral flow test
A novel pen-side diagnostic tool for diagnosis of PPR 
was developed at The Pirbright Institute (Pirbright, UK) 
in 2014. This lateral flow immunochromatographic assay 
is based on the specificity and affinity of conventional 
monoclonal antibody (MAb) C77 that was prepared 
using hybridoma cells technology in a miniPerm bioreac-
tor and purified on a protein G HiTrap column [26]. The 
C77 MAb recognises the PPRV H protein and has been 
previously used in a prototype pen-side test for PPRV 
and rinderpest [6, 26]. In principle, the MAb C77 serves 
as the antigen fishing reagent on the chromatographic 
test strip and detection reagent that is labeled with col-
loidal gold-red. The performance of this diagnostic assay 
was evaluated in the laboratory and under field condi-
tions on a superficial sample (ocular or nasal swabs). The 
test showed a sensitivity and specificity of 84% and 95%, 
respectively, relative to RT-PCR and detected as little as 
103 TCID50of cell culture-grown PPRV. The test could 
detect PPRV in swabs from animals as early as 4  days 
post-infection at a time when clinical signs were mini-
mal. The IC-LFD kit is a prospect for field diagnosis of 
PPR and is being manufactured by Foresite Diagnostics 
Ltd (Sand Hutton, York, UK). The availability of this field-
deployable diagnostic tool in developing countries will 
improve the diagnostic capacity for PPR. This will lead to 
early detection, which will significantly reduce the nega-
tive impact of PPR. Furthermore, this method could be 
utilised in the field without the need for expensive equip-
ment, removing the requirement for its operation in a 
well established laboratory. However, case confirmation 
is essential during an outbreak of PPR. In such situation, 
field friendly, rapid and accurate nucleic acid-based diag-
nostic tools (RT-LAMP, RT-RPA and Oxford nanopore 
MinION sequencers) could be deployed.

Quantum dots‑lateral‑flow immunoassay strip
Recently, a fast and ultrasensitive quantum dots lateral 
flow immunoassay strip was established at the State Key 
Laboratory of Agricultural Microbiology in China to 
detect anti-PPRV antibodies. In this assay, N protein of 
PPRV is immobilised on the detection zone of the test 
strip and luminescent water-soluble carboxyl-functional-
ised quantum dots were used as signal output and were 
conjugated to streptococcal protein G. The performance 
of the test is extraordinary compared to C-ELISA and the 
IC-LFD for PPR serum IgG antibody detection [27]. The 
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test is rapid, sensitive and suitable for on-site, point-of-
care diagnosis and post vaccination evaluation of PPRV. 
This test cannot be used for early detection of active 
infection where only IgM and viral particles are present 
in circulation. Alternatively, nucleic acid-based tests or 
PPRV antigen detection methods could be used to assess 
during disease outbreaks.

Reverse transcription loop‑mediated isothermal 
amplification assay
A novel inexpensive RT-LAMP provides an isothermal 
method to amplify viral RNA without the requirement 
of expensive specific thermal cycler [29, 30]. Moreover, 
RT-LAMP reagents can be stored at ambient tempera-
ture for at least 2  weeks. The RT-LAMP reaction could 
be performed in an inexpensive water bath, dry bath, or 
heat block and the reaction results could be directly dis-
tinguished through color change or formation of the pre-
cipitate by the naked eye or alternatively via agarose gel 
electrophoresis or real-time turbid meter. Reverse tran-
scription loop mediated isothermal amplification assays 
have been developed for the diagnosis of PPR based on 
M and N genes of PPRV with higher sensitivity than RT-
PCR [28]. This sensitive, inexpensive and streamlined 
method can be more readily used in developing countries 
that do not have access to high technology laboratories. 
However, in each RT-LAMP assay, primers must be spe-
cifically designed to be compatible with the target nucleic 
acid sequences, which may discourage researchers. In 
addition, the RT-LAMP assay requires six primers and 
has unsatisfactory reliability in detection of highly vari-
able viruses. An alternative field deployable recombinase 
polymerase amplification assay was developed targeting 
viruses of veterinary importance [32].

Reverse transcription recombinase polymerase amplification 
assay
In the advancements of the novel point-of-care molecu-
lar tests in recent years, RT-RPA assay was developed 
and coupled to a lateral flow. This assay is used for rapid 
detection of different viruses and parasites of veterinary 
and public health importance [32, 127].The assay demon-
strated a pen-side usefulness for rapid detection of path-
ogens such as PPRV, Foot-and-mouth disease virus, Orf 
virus, Bovine viral diarrhoea virus and Leishmania spp 
[32]. Generally, the assay uses recombinase, single strand 
binding protein, strand displacing DNA polymerase and 
a fluorescent probe. Then, the lateral-flow strips are cou-
pled in the detection system. These assays are highly spe-
cific for detection of PPRV as there is no cross-reaction 
with Foot-and-mouth disease virus and Orf virus, which 
may cause similar clinical signs to PPRV in small rumi-
nants, indicating the potential of being a novel testing 

tool for differential diagnosis [32]. Although the sensitiv-
ity of RPA is lower than for RT-PCR, some advantages 
of the RT-RPA assay over RT-PCR assay make it rather 
attractive. Firstly, reaction mixtures are pre-made pellets 
and provided in vacuum-sealed pouches, which can be 
kept at room temperatures for several days. This would 
save on cold chain costs and facilitate on-site diagnosis of 
PPR in the field. Secondly, the reaction can be performed 
in a water bath at a temperature of 37 to 45 °C for a maxi-
mum of just 20 min. The RT-RPA assay is rapid compared 
to RT-LAMP and it does not require expensive equip-
ment and the results are read with the naked eye in less 
than 25  min. However, virus genetic sequences analysis 
could not be determined by aforementioned diagnostic 
tools in field settings to match with the plasticity of RNA 
viruses including PPRV. The Oxford nanopore MinION 
sequencers may be of choice in such situation.

Oxford nanopore MinION sequencers
The Oxford nanopore MinION technology brings rapid 
comprehensive detection, diagnostics, and bio-surveil-
lance of emerging infectious diseases to extremely remote 
and physical challenging geographical landscapes, com-
pletely detached from the traditional physical building. 
This technology has been used in arbovirus surveillance 
and during Ebola and Zika outbreaks [34, 129]. This tech-
nology is non-PCR-based tool for meta-transcriptomic 
detection of RNA virus from the clinical samples using 
Oxford nanopore MinION sequencers. In principle, clin-
ical samples are processed in the Biomeme’s bulk nucleic 
acid extraction developer kit. There are few challenges in 
applying Oxford nanopore MinION sequencing to diag-
nosis of infectious diseases, these include; high host’s 
nucleic acid to pathogen ratio and low quality nucleic 
acid in the sample. It is, therefore, very important to 
carefully design, develop and optimise diagnostics pipe-
lines before attempting to apply them to clinical samples. 
This diagnostic platform may provide the capacity for 
genomic surveillance of PPRV as well as other infectious 
diseases in resource-limited settings in real time.

Rational integration of diagnostic tools for diagnosis 
of peste des petits ruminants
Despite of increased development and use of PPRV 
novel field-deployable diagnostic tools, diagnostics are 
not being integrated into disease control optimally. A 
comprehensible integration of diagnostic tools is essen-
tial in PPRV endemic areas. The efficient integration 
of diagnostics may be influenced by a multitude of fac-
tors including the existence of co-infections, clinically 
closely related diseases and asymptomatic cases in both 
wildlife and domestic animals. It is further influenced by 
the availability of appropriate technology and access to 
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diagnostics, test characteristics, veterinary infrastructure 
and the experience and knowledge of the veterinary ser-
vice providers in resource-limited settings. Regardless of 
the varying sensitivity and specificity of PPR diagnostic 
tests and prevalence of disease, it is clear that diagnos-
tics play a valuable and critical role in early detection of 
PPR in infected animals with disease and those at risk of 
developing the disease.

Most of PPR field deployable IC-LFDs have lower sen-
sitivity than IC-ELISA, LIPS and nucleic acid-based tests, 
but they are still useful tests on the PPR-battlefield in 
extremely remote settings, away from traditional veteri-
nary laboratories. For instance, in the entire flock, if a less 
sensitive test has scored some animals’ positive for PPR, 
the herd would be grouped as infected or at risk of devel-
oping a disease. Therefore field level diagnosis should be 
institutionalised for early screening and transportation 
of PPRV suspected samples from rural remote areas and 
ecosystem containing susceptible wildlife. In turn, early 
control measures will be put in place to prevent further 
spread of PPRV to neighboring flocks or a distant PPRV 
free zone (Fig. 3). A good example is a death toll of the 
saiga antelope; whereby a rapid diagnostic tool (PPR 
Rapid—BD SL Pirbright UK) was deployed with subse-
quent confirmation by PCR and sequencing [17].

The characteristics of an ideal diagnostic test include 
accuracy wherever used; heat-stable reagents with an 
extended shelf life; portability; minimal technical skills 
for operation; rapid, sensitive, and specific results; on-
demand testing capability or minimal batch sizes; cost 
effective tests; and suitable for a broad range of clinical 

samples [131]. The current PPRV antigens and nucleic 
acids based tests meet some, but not all, of these stand-
ards. This has led to the development of automated 
diagnostic tools. The newer automated tests using nano-
technology that no longer require the addition of multi-
ple reagents are being used for point-of-care diagnosis. 
Therefore, for recognition of PPRV during early phases 
of the disease and for clinical samples that gave equivo-
cal results in other tests and require re-confirmation, 
highly sensitive nucleic-acid-based diagnostic tests could 
be used [6]. A good number of these tests are available 
commercially including IC-LFDs, RT-LAMP and Oxford 
nanopore MinION sequencers and their uses continue to 
increase logarithmically and the cost of instruments and 
their assays continue to decrease and are becoming of 
high value in resource-limited nations.

Moreover, in cases of co-infections, the multiplex 
assays utilizing real-time amplification methods may 
be of value for simultaneous detection of multiple viral 
infections in PPR infected animals as some viruses are 
preferentially replicating in PPR infected hosts [132]. 
These assays may also detect the nucleic acid of viruses 
that are previously unrecognised and/or not cultivat-
able in  vitro. Inevitably, high mutation rates in RNA 
viruses including PPRV can be rapidly identified using 
nucleic acid amplification coupled with sequencing plat-
forms such as Oxford nanopore MinION sequencers, 
to curb highly emerging or reemerging virulent strains. 
In resource-limited countries, conventional methods 
are more readily replaced in virology because the tissue 

Fig. 3  Rational integration of diagnostic tests for rapid and correct identification of peste des petits ruminants
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culture based virology methods are costly and generally 
less sensitive than newer molecular methods.

Civil unrest, global climate and environmental change 
from hurricanes, flooding, and earthquakes have a dra-
matic influence on the frequency of certain diseases in 
new locations. A minute or dramatic change in the envi-
ronment can have a significant impact on the spread of 
diseases including PPR. These catastrophes including 
droughts or wars may lead to humans’ movements from 
place to place with their belongings, including animals. In 
such situations, contagious diseases like PPR may spread 
very rapidly. Therefore to curb PPR spread and control 
animals’ movements, highly sensitive nucleic acid-based 
field-deployable diagnostic tools are critical tools in 
keeping up with continuously changing disease dynam-
ics. In addition, prompt outbreak identification is central 
to controlling the spread of highly contagious diseases 
like PPR, but recognizing that an outbreak has occurred 
can be difficult. Most molecular methods to detect differ-
ent viral strains require that specimens are sent to distant 
reference laboratories, with confirmation of an outbreak 
possibly requiring days to weeks in resource-constrained 
countries. The development and use of both field deploy-
able immunoassays and molecular diagnostic tools such 
as IC-LFDs, RT-LAMP, RT-RPA and Oxford nanopore 
MinION sequencers may play a significant role in con-
trolling disease outbreaks in extremely remote areas in 
which transportation of clinical samples in optimum cold 
chain is unreliable (Fig. 3).

Prospects of nanobodies for use in immunoassays
In the early 90’s, Hamers-Casterman and her colleagues 
made a remarkable discovery where they found a struc-
turally different kind of antibodies which are part of 
the humoral immune response in the serum of came-
lids [133]. The heavy chain-only antibodies (HCAbs) 
in camelids or similar molecules in shark (Ig-NAR) 
are devoid of light chains [134]. The antigen bind-
ing domain of Ig-NARs or HCAbs involves a single 
domain only, referred to as V-NAR when derived from 
Ig-NARs and VHHs (nanobodies) when derived from 
HCAbs. The nanobodies have proven to be powerful 
tools in diagnostics due to their unique characteris-
tics [135]. In particular, the recombinant expression of 
nanobodies in microbial systems and straightforward 
purification using His-tag by immobilised metal affin-
ity chromatography makes their purification easy and 
very cheap. In contrast, traditional MAbs (used in virus 
detection) need more support costs and they are dif-
ficult for massive production compared to nanobody 
generation strategies [136, 137]. Furthermore, nano-
body proteins are robust against thermal denaturation, 
which obviates a cold chain for transport and storage. 

Interestingly, despite that nanobodies recognise their 
cognate antigen via one single domain-only, they still 
achieve a high affinity and specificity. In addition, the 
convex paratope of the nanobodies comprising three 
antigen binding loops or complementary determining 
regions prefer to interact with a concave surface on the 
antigen, an architecture that is not antigenic for clas-
sical antibodies [134]. Therefore, the use of nanobod-
ies may circumvent binding interference caused by 
the host’s antibody response. Thus, nanobodies should 
detect both free antigens as well as those bound by host 
antibodies, which would make nanobodies based diag-
nostic tests rather attractive [138]. In contrast, the large 
size of MAbs prevents them from reaching cryptic 
epitopes andhost IgG molecules might as well conceal 
the epitopes from the MAbs employed in the diagnostic 
test [139]. The use of the nanobody coupled with lat-
eral flow device may accelerate the development of cost 
effective, highly sensitive, specific and rapid immunoas-
says. In the light of global PPR eradication, a cost-effec-
tive, multiplex (multi-disease) diagnostic test would be 
very useful for concurrent bio-surveillance of PPR and 
similar infectious diseases such as contagious caprine 
pleuropneumonia, bluetongue, contagious ecthyma and 
foot-and-mouth disease. These multiplex assays may 
also be indispensable in all phases of PPR eradication 
operation to rule out mixed infections.

Conclusions
Peste des petits ruminants incidence is growing at an 
alarming rate worldwide and continues to undermine 
the economic activities of the poorest farmers and 
threatens biodiversity. However, in resource-limited 
setting, expensive sophisticated diagnostic tools are at 
risk of becoming redundant, due to insufficient funds 
for consumables, maintenance and expertise. Thus, 
the availability and distribution of cost effective field-
deployable diagnostic tools in developing countries will 
improve diagnostic capacity and early containment of 
PPR. Field deployable and OIE prescribed laboratory 
based diagnostic tools have inherent strengths and 
weaknesses, thus optimal amalgamation is essential for 
rapid and accurate diagnosis of PPR.
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