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Introduction
There are 3 main issues in a study: design, data
quality (data management), and statistical anal-
ysis (Fig. 1). In the statistical literature much
emphasis is put on performing the correct sta-
tistical analysis. In contrast to this, standard sta-
tistical methods are often used in the veterinary
literature and much more emphasis is put on in-
terpreting the outcome of the statistical analy-
sis. However, in neither case is the statistical
analysis able to correct the consequences of a
badly designed study or deal meaningfully with
data of dubious quality. The aspects of choos-
ing a sensible study design and the influence of
sample size are usually not reported and are not

very well represented outside purely statistical
literature. In fact, in the authors' opinion sur-
prisingly many statistical analyses are per-
formed on data where little or no reflection at
all has been made on study design and neces-
sary sample size. Very often, just a few extra
thoughts about a study design could have dras-
tically improved the outcome of the study - in
many cases at no extra cost or at a marginal ex-
tra cost. Furthermore, power calculations in the
design phase can help design the study effi-
ciently and stop studies that only have a small
chance of supporting the study hypothesis. Fi-
nally, a nearly totally overlooked area is that of
data quality. Even a carefully planned experi-
ment can be rendered worthless if data collec-
tion is not performed correctly. After data col-
lection data can be checked for errors in
different ways, in some cases data are expected

Design Data management Analysis

Figure 1. Three important phases in a study.



to behave according to some pattern, dates are
known to be ordered for instance, growth
curves are (usually) expected to grow
monotonously, etc. Even more importantly,
data can be monitored for consistency during
collection, thereby permitting changes to the
collection procedure to be made so possible
misunderstandings are corrected at the source.
For illustrative purposes examples of small data
sets are given initially. We continue by describ-
ing experimental design, data quality and con-
trol and finally analysis of small data sets. The
paper is concluded with perspectives and rec-
ommendations.

Examples
Four examples of small data sets are used for il-
lustration:

Example 1: Healing of wounds in horses
The aim of this hypothetical study was to eval-
uate 2 different antibiotics (A and B) in combi-
nation with 2 bandages (I and II) for healing of
wounds in horses. Selection of study design is
the main problem in this example.

Example 2: Moderate coliform mastitis
The aim of the study was to evaluate avoidance
of antibiotics in treatment of moderate coliform
mastitis in dairy cows (Katholm & Andersen
2001). Thirteen cows were included in the
study (CFU/cm2<142), 7 of these were treated
with antibiotics. On day 21 the cows were eval-
uated for clinical recovery (restored or not). 

Example 3: Nematodes in sows and piglets
The aim of the study was to investigate the in-
fluence of multiple nematode infections on
piglet's performance (Thamsborg et al. 2001).
Thirty-nine sows were included in the study
and given one of 3 infection levels: control (12
sows), low triggered (13 sows) and high trig-
gered (14 sows). Each litter was divided into 2

groups, one group in each litter was given an in-
fectious dose, the other group in each litter was
not. This example was included for its interest-
ing design, even it is not a 'small data set'.

Example 4: Milk yield in dairy cows
How many herds and how many cows per herd
should be included in the study in order to
demonstrate a significant difference in milk
yield for Jersey and Holstein cows? For illus-
tration both the continuous outcome and a di-
chotomised outcome (milk yield above or be-
low 18 kg) have been used. 

Study design
Design covers all the problems and considera-
tions made before data collection starts. In the
following aspects on design, sample size and
power, compliance and randomisation will be
discussed. 

Design
Research studies are performed using either an
observational design or an experimental design
(Fig. 2). Most epidemiological research is
based on observational studies. Observational
studies are characterised by the fact that infor-
mation of subjects is collected without affect-
ing them in a pre-planned manner, often with
little or no control on subjects. By contrast, in
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Figure 2. Examples of designs for observational
and experimental studies. 



experimental studies the events are influenced
and the effect of the interventions of subjects
are investigated. Experimental studies include
clinical trials (Pocock 1983), field trials and lab-
oratory studies. Experimental studies are usu-
ally performed in order to compare the effect of
different treatments on the outcome and
stronger conclusions/inferences can usually be
drawn compared to observational studies. Un-
der experimental conditions problems with
confounders can be reduced or eliminated by
careful selection of subjects (e.g. same breed,
gender and age). Observational studies can be
either prospective (data are collected forward in
time) or retrospective (data refer to past events)
whereas experimental studies are always
prospective. 
The 3 basic designs used in observational stud-
ies are cohort, case-control and cross-sectional
designs, as illustrated in Fig. 3. In a cohort
study, groups of subjects with different levels of
the study factor (exposure) are included and in-
formation on the development of the outcome
e.g. of a particular disease (or condition) for a
given period of time is collected prospectively.
In a case-control study a number of subjects
with the disease (cases) are identified along
with unaffected subjects (controls). Hereby,
cases and controls are selected from 2 different
populations. Study factors are collected retro-
spectively. In cross-sectional studies subjects
are selected from the population without know-

ledge on the study factors or disease status. The
current disease status and (present or past) ex-
posure level are collected at the same time.
Comparison of the basic designs and other de-
signs used in observational studies, and a dis-
cussion of advantages and disadvantages of the
different designs are discussed by e.g. Klein-
baum et al. (1982), Woodward (1999) and Alt-
man (1991).
The simplest intervention design (experimental
study) is a parallel group design, where subjects
are allocated to one of 2 (or more) treatments.
All subjects within a treatment group receive
the same treatment. Otherwise, all subjects are
treated similarly. If further study factors are to
be evaluated, a factorial design can be used. In
a factorial design subjects are allocated to the
combinations of the factors. Two or more levels
for each factor can be used. A parallel design is
a one-way factorial design. A Latin square de-
sign is a special case of a three-way factorial de-
sign having the same number of levels for all 3
factors. An advantage of using a Latin square
design is that the number of subjects to be in-
cluded is limited. However, interactions be-
tween the 3 factors cannot be estimated. An al-
ternative to the parallel design is a cross-over
design (Senn 1993) in which each treatment is
given at different times to each subject. This has
the advantage of eliminating the inter-subject
variability under certain assumptions, the most
important being that of no carry-over effect.
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Figure 3. Overview of the 3 commonly used designs in observational studies.



In Example 1 (Healing of wounds in horses) 
different designs can be suggested for the hy-
pothetical experimental study. However, not all
designs might be appropriate from a veterinary
point of view. Due to practical issues only a lim-
ited number of horses can be used, that is less
than 10 horses. A Latin square design can be
used in which 8 horses are included in 2 groups
of 4 horses. An example is given in Table 1. 

In Example 2 (Moderate coliform mastitis) 13
cows were included. The design is given in Fig.
4. The study is an observational study with a
cohort design, where cows with mastitis were
followed for 21 days and evaluated for clinical
recovery. Antibiotic treatment is the exposure
and clinical recovery after 21 days is the out-
come.

In Example 3 (Nematodes in sows and piglets)
39 sows were given different infection levels of
nematodes and half of the piglets in each litter
were given an infection as well. The structure of
the study is given in Fig. 5. The study is an ex-
perimental study using a factorial design with 2
factors (one factor with 3 levels for sows, one
factor with 2 levels for piglets). Note, that it is
not a standard two-way factorial design since
piglets are nested within sows, which again are
nested within infection levels for sows. 
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Table 1. A Latin square design for Example 1:
Healing of wounds in horses. Horses are allocated
into 4 treatment groups (A, B, C, D) that are combi-
nations of 2 different antibiotics and 2 types of ban-
dage. 

Leg position
Horse ID

I II III IV

1 Right fore leg A B D C
2 Left fore leg B C A D
3 Right hind leg D A C B
4 Left hind leg C D B A

Figure 4. The structure of Example 2: 'Moderate coliform mastitis'. This is an observational study with a co-
hort design. Antibiotics used is exposure and clinically restored is the outcome.

Clinically restored +

Antibiotics +

Clinically restored -

Cows with 

coliform mastitis

Clinically restored +

Antibiotics -

Clinically restored -



Sample size and power
Sample size and power calculations are impor-
tant in both experimental and observational
studies. Whenever a study is being planned
there is always a question of sample size, that is
how many subjects should be included in order
to detect a significant difference of the study
factor or treatments. For simple cases, standard
equations are available and can be used (e.g.
Noordhuizen et al. (1997), Pocock (1983)).
Such cases are e.g. comparison of two preva-
lences or comparison of two means. Calcula-
tion of sample size is based on assumptions re-
garding expected treatment effects, e.g. the
expected difference between two means or the
expected difference between two prevalences.
If no prior knowledge is available from previ-
ous studies or publications, expectations or
qualified guesses have to be used. Further, the
significance level and power, or alternatively
the width of the confidence interval, have to be
decided as they are used in the sample size cal-
culations as well. The pre-decided significance
level is the probability that the null hypothesis
is rejected, when it actually is true; Or in more
common terms: the probability that a given dif-
ference - if not present - would be detected. The
power is the probability that the null hypothesis

is rejected when it actually is false; In more
common terms: the probability that a difference
- if present - would be detected. A significance
level of 5% and power of 80-90% are com-
monly used in the sample size calculations. An
alternative to sample size calculations is calcu-
lation of power for varying sample size and/or
expected effects (Woodward 1999). In some
cases exact equations can be used. However,
power calculations can also be performed using
simulation, when no standard equations are
readily available. In the case of simulation the
power is not found exactly but is found as an es-
timate. If the number of simulations is suffi-
ciently high, the exact and simulated results are
very similar. As a rule of thumb 100 simula-
tions will give a power estimate with 95% con-
fidence limits of ±10 percentage-points, while
1000 simulations will give 95% confidence
limits of ±3 percentage-points.
In many studies collection of data is repeated in
time for each subject in order to evaluate the
long-term effects. However, it is important to
note that an increasing number of repeated
measures does not increase power or efficiency
of the test as an increasing number of subjects
does. Analogously, in studies which have a
nested structure (e.g. herds and animals within
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Figure 5. The design for Example 3: 'Nematodes in sows and piglets'. This is an experimental study using a
two-way factorial design (one factor with 3 infection levels for the sows, one factor with 2 infection levels for
the piglets). Furthermore, the structure is nested (sows are nested within treatments, and piglets are nested within
sows).



herds, where treatment regime is given at the
herd level) it is often more advantageous from a
statistical point of view to include more herds
and fewer animals in each herd rather than
fewer herds and many animals within each
herd.
In Example 4 (Milk yield in dairy cows) it was

of interest to calculate the necessary number of
herds and number of cows within each herd in
order to demonstrate a significant difference in
milk yield between the 2 breeds Jersey and Hol-
stein. There is no easily accessible standard
equation for this sample size calculation. In-
stead, simulation of power has been performed
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Figure 6. Power for Example 4: 'Milk yield in dairy cows' given for number of herds and number of cows
within herds for each breed. A continuous (A) and a dichotomised (>18 kg or ≤18 kg) outcome (B) have been
used.



for a varying number of herds and a varying
number of cows within herds. The calculated
sample size is for each breed. A continuous out-
come (milk yield) and dichotomized outcome
(milk yield >18 kg or ≤ 18 kg) have been used
for power simulations. The SAS program used
is given in the Appendices 1 and 2. Fig. 6.
shows in both cases that the effect of including
many herds with fewer animals is preferable to
including fewer herds and many animals within
each herd. For the example with 5 herds and 10
animals per herd for each breed the power is
72% for the continuous outcome and 52% for
the dichotomous outcome. Changing that to 10
herds and 5 animals per herd for each breed the
power rises to 93% for the continuous and 91%
for the dichotomous cases, respectively. The
reason for this perhaps surprising result is that
the p-value for a breed (or treatment) effect de-
pends heavily on the variance between herds,
even though it may be smaller than the variance
between animals within herds.

Compliance
For different reasons a part of the subjects in-
cluded in the study might drop out before the
end of the study (e.g. trading, death). These
withdrawals might be a problem in relation to
demonstration of significant effects, if the sig-
nificance is based on a sample size, which has
been reduced due to drop out. Therefore, the es-
timated sample size should be increased in ac-
cordance with the expected percentage of with-
drawal. If for instance the sample size needed is
estimated at 100 subjects, and the expected
withdrawal is 20%, in total 125 subjects should
be included in the study.

Randomisation
Randomisation is important (1) to prevent (or
reduce) bias (systematic error) and (2) to pro-
vide a basis for statistical analysis such as sig-
nificance tests. In epidemiological research bias

is defined as: confounding, misclassification, in-
formation bias, and selection bias (see e.g.
Kleinbaum et al. 1982, Noordhuizen et al.
1997). Bias can occur in a study if there is pref-
erential assignment of subjects to the study fac-
tor(s) in experimental studies or differential se-
lection of subjects in observational studies.
Randomisation will ensure that the variation in
data is evenly distributed between the subjects.
Further, randomisation will help balance the
distribution of other variables e.g. confounders
such as age, gender and breed. The types of ran-
domisations commonly used are (1) simple
(complete), (2) restricted (block), (3) multi-
stage, and (4) stratified. Simple randomisation
means that each subject is included without at-
tention to possible confounders. Block randomi-
sation ensures a similar number of subjects
within each level of the study factor. Multistage
sampling is used when data have a multilevel
structure such as herds and subjects within
herds. First, herds are randomly selected; sec-
ondly, subjects within herds are randomly se-
lected. Stratified randomisation is used when
one or more factors are known to have an influ-
ence on the outcome, such as age, gender, and
breed. The inclusion of subjects is balanced re-
garding the factors. Stratification might be a
problem in studies with small data sets as the
number of strata (combinations of the factors
used in stratification) can approach or even ex-
ceed the number of subjects. An acceptable al-
ternative is minimisation, which is a non-ran-
dom allocation of subjects to study factors
(Altman 1991). Minimisation has advantages
over both simple and stratified randomisation,
when sample size is small. The factor groups are
very similar even for several study factors. 
The study in example 1 (Healing of wounds in
horses) used a latin square design. There are a
number of possible latin squares with 4 levels
of each factor. First, one of these latin squares
is randomly selected (simple random selec-
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tion). Next, the 4 horses are block randomised
to the combinations of the 2 remaining factors.
In example 2 (Moderate coliform mastitis) sim-
ple randomisation was used to allocate cows to
antibiotic treatment or not. Simple randomisa-
tion was also used in example 3 (Nematodes in
sows and piglets) in order to allocate sows to the
3 infection levels and piglets to the 2 infection
levels. Example 4 (Milk yield in dairy cows)
used a two-stage sampling. Herds were ran-
domly selected among all Danish dairy herds.
Cows within herds were randomly selected. 

Data quality
Data quality is always very important, even for
a large data set. However, in most studies the
importance of data management is underesti-
mated. Inappropriate data quality may lead to
statistical analysis based on incomplete and er-
roneous data resulting in wrong conclusions.
The importance of efficient data management
can therefore not be stressed enough. Data
management includes collection of data, organ-
ising data in a database and data control (check-
ing data). When constructing the database,
common ways to minimize the number of typ-
ing errors are by (1) entering data twice and
identify discrepancies or (2) performing a com-
plete proofreading of data entered into the
database. In the following data control and cor-
rection of data will be discussed. Problems with
clinical examinations will be discussed in rela-
tion to small data sets. Data management in-
cluding data control has been a very important
part (time and cost) of human clinical trials (see
e.g. Pocock (1983) and Altman (1991)). In vet-
erinary medicine not much has been written
about data management and how to perform
data control. However, e.g. Rothman & Green-
land (1998) give some suggestions. 
Data quality is especially important when deal-
ing with small studies. Identification of strange
observations is nearly impossible, due to the

limited number of observations. For a large data
set it is often possible to identify a strange ob-
servation by evaluating the distribution of data
and identify a strange observation as being out-
standing from the remaining observations.
However, with a small number of subjects, it is
often difficult to evaluate if one observation is
dubious by comparing it to the (empirical) dis-
tribution of the remaining observations. 

Data control
Data control will usually result in improved
data quality. Data control can be performed
during data collection as well as after data col-
lection. Performing data control during collec-
tion of data might identify specific problems
with some of the recordings which can be
changed and thereby improve the validity and
quality of future recordings. Data control
should always be performed after data collec-
tion and before statistical analysis is initiated.
Depending on the type of variables different
procedures of data checking can be used. The
types of variables can be divided into qualita-
tive (dichotomous, nominal, ordinal), quantita-
tive (discrete and continuous) and miscella-
neous (e.g. dates). Qualitative data as breed and
gender have pre-specified values or codes.
Therefore, qualitative data can be checked by
identifying impossible values. For quantitative
data as weight and milk yield it is not possible
to precisely identify incorrect values. It should,
however, be possible to specify a range with
lower and upper limits of reasonable values for
the variable. However, values outside the range
are not necessarily incorrect, they are just
flagged for possible further examination. Data
control also includes evaluating the frequency
distribution and completeness of data. Consis-
tent ordering of dates can be checked. Logical
control can be used in order to evaluate consis-
tency of the data set (e.g. parity given for cows
only and not for bulls) and identifying strange
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observations (e.g. scatterplots of the relation
between 2 continuous variables and time pro-
files for each subject). 

Correction of data
Whenever a wrong or strange observation has
been identified a decision has to be made re-
garding data editing. Suspicious values should
be checked with the original data forms (if they
exist) and errors corrected. Other values might
be left unchanged or coded as missing informa-
tion. Elimination of subjects and/or values
should in general be avoided.

Clinical examinations
Clinical examinations made by e.g. the veteri-
nary practitioner are to some extent subjective
and might be wrong (misclassification bias).
Technically speaking, each veterinary practi-
tioner might have his/her own sensitivity (abil-
ity to assess true positive) and specificity (abil-
ity to assess true negative). In small data sets it
might have a large influence if some of the clin-
ical examinations are wrong. In order to im-
prove the clinical examinations, the agreement

(intra- and inter-observer variations) between
e.g. two observers can be calculated. Similarly,
agreement between repeated evaluations per-
formed by the same observer at different times
can be evaluated. 

Statistical analysis
The main aim of a statistical analysis is to use
the information from a (random) sample of sub-
jects to make inferences about the relevant pop-
ulation. Most analyses will include hypothesis
testing and estimation of the effect of the study
factors (e.g. treatments). Having a large data set
often implies robust analyses and results, mean-
ing that we can obtain the same results in dif-
ferent analyses. In case of a small data set even
small changes in the analysis and/or changes in
the data set might inflate the results. Testing the
effect of a study factor (e.g. two treatments) is
done by comparison of the difference between
the treatments relative to the standard error of
the difference. Sample size and standard error
are inversely related implying a large standard
error when sample size is small. A small study
may therefore fail to detect a (significant) dif-
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Table 2. The influence of data quality on the association between antibiotics used and clinically restored on day
21 in Example 2: Moderate coliform mastitis. One of the clinical evaluations has been changed and the influence
on the significance level (p-value) is given. Table A is the original data, tables B-D are modifications. Figures in
boldface and italic are clinical examinations that have been changed. 

A
Clinically restored

Yes No

Anti- Yes 7 0
biotic No 2 4

Test for association : p=0.020.

B
Clinically restored

Yes No

Anti- Yes 6 1
biotic No 2 4

Test for association: p=0.100

C
Clinically restored

Yes No

Anti- Yes 7 0
biotic No 1 5

Test for association: p=0.005

D
Clinically restored

Yes No

Anti- Yes 7 0
biotic No 3 3

Test for association: p=0.070



ference that is really present. With a decreasing
sample size we will usually see an increasing
p-value towards non-significance. In the fol-
lowing the choice of method, improvement of
analysis and non-parametric tests will be dis-
cussed.
The importance of quality of data is illustrated
by Example 2: Moderate coliform Mastitis
(Table 2). The association between using an-
tibiotics and being clinically restored on day 21
was significant (p=0.02 using Fisher's exact
test). If just one of the clinical evaluations is
changed from restored to not restored or visa
versa, the association might not be significant
any longer. In 2 of 3 cases where one evaluation
is changed, a non-significant association is
seen. 

Choice of method
The choice of method depends on the type of
outcome (also called the response variable). A
dichotomous outcome is a qualitative variable
with only two levels such as diseased yes/no. A
continuous outcome is a variable, which can
take all possible values such as weight gain and
milk yield. However, the continuous outcome
often has a lower and/or upper bound (e.g. milk
yield cannot be negative). In case of a dichoto-
mous outcome the relevant analyses include χ2-
test, Fisher's exact test, McNemar's test and lo-
gistic regression. The relevant analyses with a
continuous outcome include the t-test (for
paired and un-paired observations), analysis of
variance and linear regression. With other types
of outcomes such as ordinal or nominal vari-
ables with more than two levels ordinal logistic
regression, multinomial logistic regression and
loglinear models can be used (e.g. Hosmer &
Lemeshow 2000, Agresti 1990).

Improvement of analysis
Correct model specification is crucial in all
analyses. The study factors and possible con-

founders should be included in the model.
However, in a study with a small number of
subjects, it might be impossible to include con-
founders as well as study factors in the same
analysis. The number of variables, which can be
included in the model, depends on the number
of subjects. Depending on the number of levels
for each factor, 2-3 study factors can be evalu-
ated with e.g. 20 subjects. Confounding might
be difficult to deal with having small data sets.
Possible confounders are often evaluated by in-
cluding these variables in the analysis or by per-
forming analyses stratified by these variables.
However, having fewer subjects it might be im-
possible to include confounders due to limited
degrees of freedom. Repeated measures are of-
ten recorded in order to evaluate long term ef-
fects. However, many repeated measures can
generally not compensate for a limited number
of subjects. 
Logistic regression analysis of a dichotomous
outcome can be improved using exact logistic
regression (LogXact). 
In a study including herds and subjects within
herds it can be impossible to include herds as a
random effect if the number of subjects is lim-
ited. 
If strange observations have been identified in
the data control and no obvious explanation can
be found, the importance of the strange obser-
vation can be evaluated by analysis. In the anal-
ysis the strange observation can be included or
left out in turn. Differences between the 2 anal-
yses can help identify an influential observa-
tion. For small data sets, however, elimination
of even a "normal observation" might cause
dramatic differences in the results. This ap-
proach is therefore not possible for small data
sets. Consistent evaluation of the influence of
strange observations is therefore nearly impos-
sible for small data sets. This indicates further
the importance of having high quality data. 
Model validation can be used in order to vali-
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date the results. Ideally, this is done using the
original subjects for estimation of the model.
Validation is then performed using new sub-
jects, by estimation of the outcome for the new
subjects using the developed resulting model.
Differences between the estimated and ob-
served outcome for the new subjects indicate
the performance of the resulting model. How-
ever, it is often not feasible to collect validation
data and the original data must be used for the
whole validation process. With a large data set,
this will normally be done by dividing data into
2 subsets, one subset is used for developing and
estimating the model (learning subset), the
other subset is used to validate the model (test
subset). The difference between the observed
and predicted values for the test subset is calcu-
lated and is used as an indicator of model qual-
ity. The learning subset often comprises 1/2 or
2/3 of the complete data set depending on num-
ber of observations in the complete data set. For
a small data set, this is often not possible, as the
number of observations in the learning subset
may be too small to estimate the model. Instead,
validation can be performed using cross-valida-
tion (Weisberg 1985). Here, one of the most
commonly used methods is the so-called leave-
one-out technique. 
Simulation and bootstrapping are further meth-
ods that can be used in order to understand, im-
prove, and validate the models. 

Non-parametric methods
Non-parametric methods are also called distri-
bution-free tests and rank methods. For the sim-
plest parametric tests there are corresponding
non-parametric tests e.g. Mann-Whitney's test
and Wilcoxon's test correspond to t-test for un-
paired observations, Wilcoxon's signed rank
test corresponds to t-test for paired observa-
tions, Kruskall Wallis's test and Friedman's test
correspond to one-way and two-way analysis of
variance, respectively. A non-parametric test is

a test where no assumptions regarding the out-
come have to be fulfilled. However, there are
still assumptions which must be fulfilled
(Conover 1980). In general, the non-parametric
tests are not as informative as parametric meth-
ods because the non-parametric methods use
ranks instead of original values. The non-para-
metric methods are therefore mainly used for
testing hypotheses and not for estimation. 
If the assumptions for performing a parametric
test are satisfied, the non-parametric tests are
not as efficient as the parametric. The relative
efficiency between 2 similar tests can be calcu-
lated as the sample size needed using one test
compared to the sample size needed for the sec-
ond test under similar conditions (Conover
1980). The relative efficiency of non-paramet-
ric tests compared to the corresponding para-
metric test is often small. Therefore, if the as-
sumptions for performing a parametric test are
fulfilled, it is easier to detect significant effects
using the parametric test compared to the rele-
vant non-parametric methods. Furthermore,
parametric methods offer a much richer class of
models than non-parametric methods. 
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Sammendrag
Epidemiologiske studier baseret på små datasæt - en
statistikers synspunkt.

Vi betragter tre vigtige trin i et studie, som har rele-
vans for den statistiske analyse. De er: design af
studiet, data kvalitet og statistisk analyse. Mens
statistisk analyse ofte bliver betragtet som et vigtigt
element i litteraturen og valget af statistisk metode
får megen opmærksomhed, så synes der at blive lagt
mindre vægt på design af studiet og nødvendig
stikprøvestørrelse. Endelig bliver et meget vigtigt el-
ement, nemlig undersøgelse og validering af de ind-
samlede data's kvalitet, oftest overset.
Eksempler fra veterinær epidemiologi og anbe-
falinger for hvert af trinnene bliver givet sammen
med relevante referencer til litteraturen. 
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Appendix 1: Nested example using continuous data. Program written in SAS for calculation of sample size.
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Appendix 2: Nested example using dichotomous data. Program written in SAS for calculation of sample size.
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