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Abstract
Background: Anaplasma phagocytophilum is the causative agent of tick-borne fever in ruminants and human 
granulocytotropic anaplasmosis (HGA). The bacterium is able to survive for several months in immune-competent 
sheep by modifying important cellular and humoral defence mechanisms. Little is known about how different strains 
of A. phagocytophilum propagate in their natural hosts during persistent infection.

Methods: Two groups of five lambs were infected with each of two 16S rRNA gene variants of A. phagocytophilum, i.e. 
16S variant 1 which is identical to GenBank no M73220 and 16S variant 2 which is identical to GenBank no AF336220, 
respectively. The lambs were infected intravenously and followed by blood sampling for six months. A. 
phagocytophilum infection in the peripheral blood was detected by absolute quantitative real-time PCR.

Results: Both 16S rRNA gene variants of A. phagocytophilum established persistent infection for at least six months and 
showed cyclic bacteraemias, but variant 1 introduced more frequent periods of bacteraemia and higher number of 
organisms than 16S rRNA gene variant 2 in the peripheral blood.

Conclusion: Organisms were available from blood more or less constantly during the persistent infection and there 
were individual differences in cyclic activity of A. phagocytophilum in the infected animals. Two 16S rRNA gene variants 
of A. phagocytophilum show differences in cyclic activity during persistent infection in lambs.

Background
Anaplasma phagocytophilum is an obligate intracellular
bacterium, transmitted by Ixodes ticks, and is recognized
as the causative agent of TBF (tick-borne fever) in sheep
and HGA (human granulocytotropic anaplasmosis) in
humans [1-3]. Estimates suggest that approximately
300.000 lambs are infected by A. phagocytophilum on
pastures in Norway each year, inflicting considerable eco-
nomic and animal welfare consequences [4,5]. It is sug-
gested that tick-borne diseases and particularly
anaplasmosis are underreported in veterinary and human
medicine in Norway [6]. One reason for this underesti-
mation might be attributed to the diversity in virulence
and thus clinical manifestation among genetic variants of
A. phagocytophilum [7,8]. Five 16S rRNA gene variants of
A. phagocytophilum have previously been identified to
infect sheep in Norway, and one of these variants is

known to cause severe clinical disease in domestic sheep
(Variant 1) [5,9]. Different genetic variants have been
found within the same flock of sheep and even within sin-
gle animals [5].

By modifying important cellular and humoral defence
mechanisms, A. phagocytophilum is able to survive and
propagate for several months in immune-competent
sheep [2,10,11], which may be crucial for the survival of
the organisms due to the lack of transovarial transmission
between generations of ticks [12,13]. Because of the brev-
ity of acute A. phagocytophilum infection, transmission
may rely on the tick's ability to acquire the organism from
persistently infected sheep [14]. The ability for some 16S
rRNA gene variants to establish sustained and persistent
bacteraemias may contribute to enhanced transmission
from host and tick and favour the spread and propagation
of certain genetic strains in nature [14,15].

The present study aims to investigate in vivo propaga-
tion of two naturally occurring sheep variants of A.
phagocytophilum during persistent infection in lambs by
qPCR (absolute quantitative real-time PCR).
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Materials and methods
Experimental infection of lambs and blood sampling
Eleven 5-months-old lambs of the Norwegian Dala breed,
were housed indoors before and during the experimental
period lasting for 184 days. The experiment was
approved by the National Animal Research Authority in
Norway. Five lambs (L1-L5) were intravenously inocu-
lated with 1 ml of a whole blood dimethyl sulphoxide
(DMSO) stabilate of the 16S rRNA gene variant 1 (Identi-
cal to GenBank no M73220), containing 9.03 × 107 A.
phagocytophilum organisms ml-1. Another five lambs
(L6-L10) were inoculated with 1 ml whole blood DMSO
stabilate of the 16S rRNA gene variant 2 (Identical to
GenBank no AF336220), containing 1.6 × 108 A. phagocy-
tophilum organisms ml-1. The inocula had been stored as
heparinised blood with 10% DMSO at -75°C, and had
earlier been used in several inoculation trials [15]. The
infection doses were quantified according to the protocol
described under materials and methods section "DNA
isolation and qPCR analysis of A. phagocytophilum infec-
tion". One lamb (L11) was kept as an uninfected control.
All lambs were examined and found negative for Myco-
plasma ovis (formerly Eperythrozoon ovis) infection by
blood smear analysis prior to inoculation. EDTA blood
samples were collected from the jugular vein on day 0
(before infection), day 3 (post infection) and then every
second or third day for a six month period. Blood samples
were stored at -75°C for later PCR analysis. In addition,
total and differential neutrophil counts were determined
electronically (ADVIA, Bayer) for the first 24 days of the
infection. Serum samples were collected in week 0, 2, 4, 8,
12, 16, 20 and 26 of the experimental infection. The rectal

temperature was recorded before each blood sampling
and the incubation period was defined as the number of
days between inoculation and the first day of fever (>
40°C). The duration of fever was recorded as the number
of days with fever [16].

DNA isolation and qPCR analysis of Anaplasma 
phagocytophilum infection
An automated isolation procedure based on magnetic
bead technology was performed by the application of the
MagNA Pure LC instrument (Roche) and the MagNA
Pure LC DNA Isolation Kit I Blood Cells High Perfor-
mance (Roche). Briefly, a total number of 81 EDTA blood
samples from each of the infected animals were thawed at
room temperature and 200 μl blood was transferred to
the DNA isolation procedure according to the instruction
manual (Roche). The isolated DNA was eluted with 100
μl low salt buffer and stored at -20°C awaiting PCR analy-
sis. The concentration of DNA in each sample was deter-
mined by OD260 spectrophotometry (GeneQuant II,
Pharmacia Biotech, Cambridge, UK). The samples were
diluted 1:100 before PCR analysis.

A 275 bp plasmid was designed from the N-terminal
conserved part of the msp2(p44) expression site for abso-
lute quantification against a standard curve. The plasmid
represents a region between 364 and 112 bps upstream of
the highly conserved 5' sequence that encodes the LAKT
amino acid residue which flanks the N-terminal end of
the hyper variable region in the msp2(p44) expression site
(Table 1) [17]. The primers were ApMSP2252 5'
ACAGTCCAGCGTTTAGCAAGA and ApMSP2 459 5'
CACCACCAATACCATAACCA amplifying a product of

Table 1: Primer -and plasmid sequences for qPCR of the A. phagocytophilum msp2 (p44) expression site (partial sequence).

Primer Sequence Conc. Tm °C

ApMSP2252 5'ACAGTCCAGCGTTTAGCAAGA-3' 0.5 μM 57.0

ApMSP2459 5'GCACCACCAATACCATAACCA-3' 0.5 μM 56.5

Plasmid construct

5'GAATTCGCCCTTACAGTCCAGCGTTTAGCAAGATAAGAGATTTTAGTA
TAAGGGAGAGTAACGGAGAGACTAAGGCAGTATATCCATACTTAAAGGA
TGGAAAGAGTGTAAAGCTTGAGTCTAACAAGTTTGACTGGAACACTCCTG
ATCCTCGGATTGGGTTTAAGGACAACATGCTTGTAGCTATGGAAGGCAGT
GTTGGTTATGGTATTGGTGGTGCCAGGGTTGAGCTTGAGATTGGTTACG

AGCGCTTCAAGACCAAAAGGGCGAATTCT-3'

Primer binding sites are indicated (underscored) in the sequence of the plasmid construct. The concentrations of primers are calculated for 
the final reaction mix.
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208 bp covering both the plasmid and the conserved N-
terminal region of the expression site for msp2(p44)
(Table 1). Plasmid and primers were manufactured by
TIB Molbiol (Germany). The plasmid was included as
duplicates in every PCR run at 10 fold dilution series
ranging from 101 to 106 copies. A Light Cycler 480 instru-
ment (Roche) was used for the real-time absolute quanti-
fication PCR analysis. 96 well white plates were loaded
with a reaction mix consisting of 1 μl (10 μM)
ApMSP2252 primer, 1 μl (10 μM) ApMSP2459 primer, 3
μl RNAse free H2O, 10 μl LightCycler 480 DNA SYBR
Green I Master and 5 μl sample. Plates were sealed by
sealing foil and centrifuged at 1200 rpm for two minutes.
Samples and non-template controls were run in tripli-
cates on each plate.

The standard curve was made from the mean of dupli-
cate readings of the plasmid amplification. The quantifi-
cation against the standard curve was automatically done
using the LightCycler 480 Software (release 1.5.0) (Roche)
(Fig. 1 and 2). The Cq values (quantification cycle) were
determined by the 2nd derivative maximum method, and
quantitative data (X) were estimated as the mean of tripli-
cate Cq values divided by the concentration (μg/ml) of
DNA in each sample to correct for the differences in the
efficacy of DNA preparations. Triplicate readings with
mean values below 1 were regarded as zero and the ampl-
icons were verified by melting point analysis (Tm) (Fig.
3). The quantitative data are presented as Log10 (1+X) on
a linear graph for the longitudinal development of bacter-
aemia over time. A threshold was set at the lowest plas-
mid dilution (101 copies) and calculated as follows (Log10
(1+101) = 1.04) to better distinguish the periods of bacte-
raemias (Fig. 4, 5 and 6).

Serology
Briefly, an indirect immunofluorescence antibody assay
(IFA) was used to determine the developing polyvalent
antibody titres to A. phagocytophilum in serum from the
infected lamb. Two-fold dilutions of sera were added to
slides pre-coated with antigen obtained from horses (for-
merly Ehrlichia equi) (Protatek, St. Paul. Minn.). Bound
antibodies were visualized by fluorescein-isothiocyanate
(FITC)-conjugated rabbit-anti-sheep immunoglobulin
(Cappel, Organon Teknika, West Chester, PA). Sera were
screened for antibodies at dilution 1:40. If positive, the
serum was further diluted and retested. A titre of 40 or
more was regarded as positive [18]. The titres were pre-
sented as Log10(1+titre) (Fig. 7).

Statistics
For statistical analyses, two-sample t-tests were per-
formed in the Statistix, version 4.0 (Analytical software).
P values < 0.05 (two-tailed) were regarded as significant.

Results
Clinical manifestation and haematology
All lambs reacted with fever (> 40.0°C) within five to six
days after inoculation. Table 2 summarizes the main clin-

Figure 1 qPCR amplification of the plasmid dilution series. A plas-
mid dilution series was produced containing 101 to 106 copies of the 
msp2 (p44) gene of A. phagocytophilum. The figure shows the amplifi-
cation cycles of the dilution series used as standard curve for quantifi-
cation of the infection. In addition the figure shows the lack of 
amplification of the non template controls.

Figure 2 Standard curve of the plasmid dilution series. The stan-
dard curve was used for the quantification of A. phagocytophilum or-
ganisms in the blood from infected lambs.

Figure 3 Melting point analysis of the amplicons. The figure shows 
the melting point analyses (Tm) of the plasmid, A. phagocytophilum or-
ganisms isolated from blood and non template controls. No primer di-
mers were formed.
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Figure 4 qPCR of infection with 16S rRNA gene variant 1 of A. 
phagocytophilum. Cyclic bacteraemia of persistent A. phagocytophi-
lum infection in five lambs (L1-L5) inoculated with the Norwegian 16S 
rRNA gene variant 1, monitored by qPCR for six months. The horizontal 
line shows the threshold for bacteraemia and represents the lowest 
(10 copies) plasmid dilution for the standard curve calibration. The re-
sults are presented as logarithm transformed means of triplicate Cq 

readings (X) for each sample, calculated as Log10 (1+X).
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Figure 5 qPCR of infection with 16S rRNA gene variant 2 of A. 
phagocytophilum. Cyclic bacteraemia of persistent A. phagocytophi-
lum infection in five lambs (L6-L10) inoculated with the Norwegian 16S 
rRNA gene variant (GenBank no) AF336220 monitored by qPCR for six 
months. The horizontal line shows the threshold for bacteraemia and 
represents the lowest (10 copies) plasmid dilution for the standard 
curve calibration. The results are presented as logarithm transformed 
means of triplicate Cq readings (X) for each sample, calculated as Log10 

(1+X).
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ical and haematological parameters during the acute
phase of the infection.

qPCR amplification of the msp2/p44 expression site
The lambs in both groups developed acute infections
with detectable levels of bacteraemia by PCR within three
days after inoculation with 16S rRNA gene variant 1 and
within three to five days with variant 2. The initial peri-
ods of bacteraemia had a mean duration of 25.6 (± 6.96)
days with 16S rRNA gene variant 1 and 11.4 (± 1.28) days
with 16S rRNA gene variant 2, respectively (P = 0.02)
(Fig. 4 and 5). The initial bacteraemias were followed by
lower cyclic levels of bacteraemia in all animals at indi-
vidual, -and variant dependent frequencies and ampli-
tudes. 16S rRNA gene variant 1 cycled more frequently
compared with 16S rRNA gene variant 2 and had more
periods of bacteraemia above threshold (mean of 10 peri-
ods compared to 6.2 periods respectively) (Fig. 4 and 5).
The number of organisms detected in the blood was
higher in periods of bacteraemia with variant 1 during the
persistent phase of infection (Fig. 4). One lamb (L1) had
exceptionally high numbers of organisms during the peri-

ods of bacteraemia (Fig. 4). In contrast, another lamb
(L10) had low numbers of organisms and showed very lit-
tle cyclic activity during the persistent phase with only
one period of bacteraemia (Fig. 5). Lamb 8 (L8) had even
levels of cyclic activity with very few days below threshold
(10 organisms), during the persistent infection (Fig. 5).
The uninfected control lamb (L11) was negative during
the whole experimental period (Fig. 6).

Serology
All lambs, except one (L7), seroconverted before day 17
after inoculation. This lamb did not have positive titre
until day 59. Mean titres were higher for the lambs
infected with 16S rRNA gene variant 1 than lambs
infected with variant 2 (Fig. 7).

Discussion
In the present study, differences in clinical manifestation
between two 16S rRNA gene variants of A. phagocytophi-
lum were observed during the acute phase of the infec-
tion. Lambs infected with gene variant 1 had a longer
period of fever, significantly longer periods of initial
bacteraemia, and a more severe neutropenia compared to
lambs infected with gene variant 2. These results are in
accordance with earlier observations [8]. Earlier studies
have also reported that gene variant 1 of A. phagocytophi-
lum is involved in the majority of fatal TBF cases in sheep
[19].

It has previously been confirmed that A. phagocytophi-
lum can establish long term infections in immune-com-
petent sheep [2,20-22]. During this experiment, both 16S
rRNA gene variants persisted for at least six months,
although the level of bacteraemia gradually diminished
towards the end of the experiment (Fig. 4 and 5). Both
variants showed a cyclic pattern with numbers of organ-
isms waxing and waning at different frequencies, indicat-
ing that both individual and variant dependent
differences exist. Periods of bacteraemia terminated by
sharp reductions in number of organisms as previously
described for the closely related organism, Anaplasma
marginale [23,24]. This was hypothesized to reflect an
antigen variant-specific immune response to A. phagocy-
tophilum [25]. A. marginale seems to cycle regularly at
approximate intervals of 5-8 weeks during persistent
bacteraemia [14,23]. However, the present study indicates
a much more frequent and inconsistent cyclic activity of
A. phagocytophilum.

Transovarial transmission of A. phagocytophilum has
been reported in certain tick species [26]. However, the
maintenance of A. phagocytophilum within I. ricinus tick
populations is unlikely, due to lack of evidence that trans-
ovarial transmission of A. phagocytophilum in female ixo-
did ticks occurs [13,27]. For the pathogens to survive in

Figure 6 qPCR of uninfected control animal (L11). The uninfected 
control animal was monitored by qPCR as described for the infected 
lambs throughout the experimental period. The horizontal line shows 
the threshold for bacteraemia and represents the lowest (10 copies) 
plasmid dilution for the standard curve calibration. The results are pre-
sented as logarithm transformed means of triplicate Cq readings (X) for 
each sample, calculated as Log10 (1+X).
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Figure 7 Serology of A. phagocytophilum infection. Mean antibody 
titre ± SD in lambs inoculated with 16S rRNA gene variant 1 (continu-
ous line) and 16S rRNA gene variant 2 (dotted line) of A. phagocytophi-
lum during a six months infection period. * P < 0.05.
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an Ixodes-host cycle, the duration of host infectivity must
span the gap between seasons of tick activity [28].

Ixodid ticks normally remain attached for days to weeks
depending on for instance tick species and their develop-
mental stage [29]. The majority of the blood meal and
thus host to tick transmission mainly occurs during the
rapid feeding phase at the end of the attachment period
[29], while tick to host transmission takes place during
the first or second day after attachment in the prepara-
tory feeding phase [30]. As lambs infected with variant 1
had more frequent cycles and higher number of circulat-
ing organisms than variant 2 for prolonged periods dur-
ing the persistent infection, ticks are more likely to be
exposed to this variant during feeding in the persistent
period [14]. This may favour the spread of this variant in
nature and explain why gene variant 1 is more frequently
encountered than gene variant 2 by diagnostic sampling
in randomly selected sheep flocks [5]. However, this
statement has to be further elucidated in experimental
transmission trials using ticks. For instance, the transmis-
sion efficacy of gene variant 1 and 2 in Ixodes ticks,
respectively, are unknown and requires further investiga-
tion. Previous studies have shown that the efficacy of
transmission is influenced by the number of circulating
neutrophils and possibly the number of feeding ticks [31].
The ticks also seem to promote leukocyte trafficking to
the tick bite site, thus directly influencing the efficacy of
transmission [32].

The cyclic behaviour of A. phagocytophilum during
persistent infection may be influenced by the immuno-
logical response towards changing surface proteins as
previously suggested, although different intrinsic immu-
nogenic properties may be carried by the various 16S
rRNA genotypes [10,25,33]. The stronger immune
response with variant 1 than variant 2 in the present
study may indicate differences in immune stimulatory
potential between the variants [5], differences in individ-
ual humoral responses or higher antigenic relatedness of
variant 1 with the used test antigen.

In the present study, there were marked differences
between individual animals with respect to the amplitude
of bacteraemia, number of bacteraemia periods, time of
serological conversion -and response regardless of
genetic variant. The reason for this strong individual vari-
ation is however unknown, and has to be further eluci-
dated.

Conclusion
Two naturally occurring sheep strains of A. phagocytophi-
lum established persistent infections for at least six
months. Both variants performed cyclic bacteraemia, but
variant 1 showed more frequent bacteraemias and higher
number of organisms during the infection. In the present
study, organisms were available from blood more or less
constantly during the entire study period. Future studies
should use ticks to investigate whether the transmission
efficacy is different among gene variants of A. phagocyto-
philum and determine if ticks are able to take up organ-
isms continuously during the persistent phase. The ability
of A. phagocytophilum to establish long term persistence
combined with a large repertoire of genetic variants make
the movement of sheep between flocks and geographical
locations likely to introduce novel genetic variants to new
areas.
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Table 2: Mean ± SD values of clinicalvariables in the two groups of lambs inoculated with each of the two 16S rRNA gene 
variants of A. phagocytophilum, variant 1 and 2 respectively.

16S gene 
variants of A. 
phagocytoph

ilum

N Incubation 
period
(days)

Maximum
fever (°C)

Duration of 
fever

(days)

Nadir of 
neutropenia

Duration of 
neutropenia 

(days)

1 5 5.6 ± 0.89 41.8 ± 0.23** 9.4 ± 3.21** 0.29 ± 0.108* 6.3 ± 3.20*

2 5 6.6 ± 0.55 41.0 ± 0.34 2.2 ± 0.45 0.73 ± 0.236 0.3 ± 0.50

The incubation period is the number of days from inoculation until the first day of fever. Duration of fever is the number of days with fever 
during the infection. Nadir of neutropenia (< 0.7 × 109 Litre-1) is the lowest neutrophil count. * P < 0.05, ** P < 0.01.
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