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Abstract

Although the dog breeding industry is common in many countries, the presence of antimicrobial resistant bacteria
among pups in kennels has been infrequently investigated. This study was conducted to better understand the
epidemiology of antimicrobial-resistant Escherichia coli isolates from kennel pups not treated with antimicrobials.
We investigated susceptibilities to 11 antimicrobials, and prevalence of extended-spectrum B-lactamase (ESBL) in 86
faecal E. coli isolates from 43 pups in two kennels. Genetic relatedness among all isolates was assessed using
pulsed-field gel electrophoresis (PFGE). Susceptibility tests revealed that 76% of the isolates were resistant to one or
more of tested antimicrobials, with resistance to dihydrostreptomycin most frequently encountered (66.3%)
followed by ampicillin (60.5%), trimethoprim-sulfamethoxazole (41.9%), oxytetracycline (26.7%), and
chloramphenicol (26.7%). Multidrug resistance, defined as resistance against two or more classes of antimicrobials,
was observed in 52 (60.5%) isolates. Three pups in one kennel harboured SHV-12 ESBL-producing isolates. A
comparison between the two kennels showed that frequencies of resistance against seven antimicrobials and the
variation in resistant phenotypes differed significantly. Analysis by PFGE revealed that clone sharing rates among
pups of the same litters were not significantly different in both kennels (64.0% vs. 88.9%), whereas the rates among
pups from different litters were significantly different between the two kennels (72.0% vs. 33.3%, P < 0.05). The
pups in the two kennels had antimicrobial-resistant £ coli clones, including multidrug-resistant and ESBL-producing
clones. It is likely that resistant and susceptible bacteria can clonally spread among the same and/or different litters

thus affecting the resistance prevalence.

Findings

Spread of antimicrobial-resistant bacteria from compa-
nion animals to humans causes concern but the role of
companion animals as reservoirs of antimicrobial resis-
tant bacteria requires further investigation [1]. Escheri-
chia coli are commonly found in the intestinal tract of
animals, including dogs, and constitute a reservoir of
resistant genes for potentially pathogenic bacteria [1].
Dogs may also be a reservoir of E. coli strains that cause
extraintestinal infections in humans [2]. Antimicrobial
resistance of canine E. coli has previously been investi-
gated [3-5].

Antimicrobial-resistant E. coli have been isolated more
frequently in kennel dogs than in individually owned
dogs [3]. Breeding of multiple dogs at one location may
increase the risk of spreading antimicrobial resistant
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clones in the population similar to livestock on the
same premises [6,7].

The purpose of the present study was to compare
phenotypic and genetic characteristics of antimicrobial
resistant E. coli isolated from the faeces of pups in ken-
nels, and to investigate genetic relatedness among these
isolates as the epidemiology of antimicrobial resistant
bacteria in dog populations has not been extensively
studied.

Faecal samples were obtained from 43 apparently
healthy pups not above two months of age from two
kennels (A and B). Twenty-five pups were from eight lit-
ters in kennel A (A-a to A-h), and 18 were from five lit-
ters in kennel B (B-a to B-e; Table 1). There was no
history of antimicrobial use in the pups but the dams
may have been administered lincomycin for postpartum
infection prophylaxis. Briefly, faecal swabs were plated
onto desoxycholate-hydrogen sulphide-lactose agar
(Eiken Chemical, Tochigi, Japan) and incubated over-
night at 37°C in an aerobic atmosphere. Subsequently,
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Table 1 Details of surveyed pups in this study
Kennel Litter Breed No. of pups Pup identity Date of birth Age in days
A A-a Toy poodle 3 A-a-1 - A-a-3 5/13/2009 30

A-b Toy poodle 3 A-b-1 - A-b-3 5/15/2009 28

A-c Chihuahua 2 A-c-1 - A-c-2 4/17/2009 57

A-d Toy poodle 3 A-d-1 - A-d-3 6/23/2009 45

A-e Toy poodle 4 A-e-1 - Ae4 7/1/2009 37

A-f Toy poodle 5 Af-1 - A5 7/9/2009 29

A-g Toy poodle 3 A-g-1-A-g-3 9/2/2009 38

A-h Toy poodle 2 A-h-1 - A-h-2 9/6/2009 35

Total 25
B B-a Maltese 2 B-a-1 - B-a-2 8/3/2009 46

B-b Beagle 4 B-b-1 - B-b-4 7/29/2009 51

B-c Miniature dachshund 5 B-c-1 - B-c-5 8/1/2009 51

B-d Papillon 3 B-d-1 - B-d-3 8/17/2009 53

B-e Chihuahua 4 B-e-1 - B-e-4 8/25/2009 55

Total 18

two lactose fermenting colonies with typical E. coli mor-
phology were picked and subjected to confirmatory
Gram staining, indole, methyl red, Voges-Proskauer, and
Simmons’ Citrate tests.

Informed consent from both kennels was obtained and
treated in accordance with the Japanese Law Concerning
the Protection of Personal Information (Law No. 57,
2003).

Minimum inhibitory concentrations of ampicillin
(AMP), cefazolin, ceftiofur, dihydrostreptomycin (DHS),
gentamicin, kanamycin, oxytetracycline (OTC), chloram-
phenicol (CHL), trimethoprim-sulfamethoxazole (SXT),
nalidixic acid and enrofloxacin were determined using
the agar dilution method according to the Clinical and
Laboratory Standards Institute (CLSI) Guidelines [8].
CLSI resistance breakpoints [8,9] were used in the cate-
gorical analysis of all drugs except DHS where 32 pg/
mL was used as reported elsewhere [10]. For quality
control, E. coli ATCC 25922 was used.

All isolates were screened for extended-spectrum [3-
lactamase (ESBL) production by the combination disk
test (cefotaxime and ceftazidime with or without clavu-
lanic acid) [8]. ESBL-producing strains were examined
for B-lactamase-encoding genes including blaTEM,
blaSHV, blaCTX-M-2 group, and blaCTX-M-9 group
by polymerase chain reaction and sequencing [11].

Pulsed-field gel electrophoresis (PFGE) was performed
according to standard methods outlined by PulseNet
[12]. DNA was digested with Xbal (Takara, Shiga,
Japan) and electrophoresed on a CHEF DRII (Bio-Rad
Laboratories, Hercules, CA, USA), with switch times of
2.2-54.2 s at 14°C for 20 h. PFGE profiles were analysed
using BioNumerics software version 4.0 (Applied Maths,
TX, USA). DNA fragments on each gel were normalised
using the A molecular weight marker on each gel to

enable comparisons between different gels. Cluster ana-
lysis was performed by the unweighted pair group
method using arithmetic average. DNA relatedness was
calculated based on the Dice coefficient.

The prevalence of antimicrobial resistance and rates of
clone sharing between the two kennels were compared
using Fisher’s exact test.

In this study, we investigated the prevalence of antimi-
crobial resistance in faecal E. coli isolates from kennel
pups without a history of antimicrobial use; however,
their dams may have been administered with lincomy-
cin. If this is the case, the possibility that the pups were
exposed to the agent via the milk cannot be excluded. It
is generally known that lincomycin is inactive against
aerobic Gram-negative bacteria including E. coli, but
active against Gram-positive and/or anaerobic bacteria
[13], possibly causing changes in the intestinal micro-
flora composition. The effects of an altered intestinal
flora on the population of resistant and susceptible E.
coli are unknown, but may need to be taken into
account in the present results.

We found that 75.6% (1 = 65) of E. coli isolates origi-
nating from 35 pups in two kennels, were resistant to
one or more of the antimicrobials tested. Resistance to
DHS was most frequent (66.3%), followed by AMP
(60.5%), SXT (41.9%), OTC (26.7%), and CHL (26.7%)
(Table 2). Multidrug resistance defined as resistance
against two or more classes of antimicrobials was
observed in 60.5% (n = 52) of isolates, originating from
29 pups in two kennels. Comparison between kennels A
and B revealed that the prevalence of resistance against
seven of the tested antimicrobials differed significantly
(P < 0.05). Twelve and five resistance patterns were
observed in kennels A and B, respectively, with the pat-
terns differing between the two kennels, except for the
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Table 2 The minimum inhibitory concentration (MIC) range and resistance rates among Escherichia coli isolates from

pups originating from two kennels (A and B)

Substance® MIC range (pg/mL) MIC5o  MICqq Resistance No. of resistant isolates (%)/No. of pups
breakpoints that harboured resistant isolate(s) (%)
(ug/mL)®
Total Kennel A Kennel B
(n = 86/43) (n = 50/25) (n = 36/18)
AMP 2->512 >512 >512 >32 52 (60.5)/30 (69.8) 29 (58.0)/17 (68.0) 23 (63.9)/13 (72.2)
CFz 8-128 4 8 >32 5(5.8)/3 (7.0) 0 (0)/0 (0) 5(13.9*/3 (16.7)
CEF <0.125 - 32 05 1 >8 5(5.8)/3 (7.0) 0 (0)/0 (0) 5(13.9*/3 (16.7)
DHS 2->512 512 >512 >32 57 (66.3)/32 (74.4) 35 (70.0)/19 (76.0) 22 (61.1)/13 (72.2)
GEN 05 - 256 1 128 >16 6 (18.6)/12 (27.9) 16 (32.0)*/12 (48.0)* 0 (0)/0 (0)
KAN 2->512 4 16 >64 (3 5)/2 (4.7) 3 (6.0)/2 (8.0) 0 (0)/0 (0)
oTC 1-512 2 512 >16 23 (26.7)/17 (39.5) 18 (36.0)*/14 (56.0)* 5(13.9)/3 (16.7)
CHL 4->512 8 512 >32 23 (26.7)/17 (39.5) 18 (36.0)*/14 (56.0)* 5(13.9)/3 (16.7)
NAL 2->512 4 16 >32 7 8.1)/5(11.6) 2 (4.0)/2 (8.0) 5(13.9)/3 (16.7)
ENR <003 - 256 0.06 1 >4 5(5.8)/3 (7.0) 0 (0)/0 (0) 5(13.9%/3 (16.7)
SXT <0.25/4.75 - >64/1216 1719 >64/1216 >16/304 36 (41.9)/21 (48.8) 27 (54.0)*/16 (64.0)* 9 (25.0)/5 (27.8)

2AMP, ampicillin; CFZ, cefazolin; CEF, ceftiofur; DHS, dihydrostreptomycin; GEN, gentamicin; KAN, kanamycin; OTC, oxytetracycline; CHL, chloramphenicol; NAL,

nalidixic acid; ENR, enrofloxacin; SXT, trimethoprim-sulfamethoxazole.

PThe breakpoints for AMP, CFZ, CEF, GEN, KAN, OTC, CHL, ENR and SXT, and that for NAL were based on CLSI document M31-A3 [9] and M100-520 [8],
respectively, whereas the breakpoint of DHS was based on an epidemiological cut-off value according to another report [10].

AMP-DHS-SXT and DHS resistance phenotypes (Table 3).
These findings indicate that the prevalence of antimicrobial
resistant E. coli in pups varies between kennels.
Additionally, the Xbal-digested PFGE revealed 13 and
10 distinct major profiles (= 90% Dice similarity) in 50
and 36 isolates from 25 and 18 pups from kennels A
and B (Figures 1 and 2), respectively. These PFGE pro-
files correlated highly with resistance phenotypes, except

for profiles A-1, A-5 and A-11. Of all 43 pups, 17 pups
harboured two isolates differentiated by PFGE and/or
resistance phenotypic profiles, indicating that diverse E.
coli populations can colonise intestinal flora during
infancy. Sixteen of 25 pups in kennel A (i.e. two, three,
three, five, and three pups within litters A-a, A-b, A-d,
A-f, and A-g, respectively) and 16 of 18 pups in kennel
B (i.e. two, four, four, two, and four pups within from

Table 3 The distribution of resistance phenotypes among Escherichiacoli isolates from pups in two kennels (A and B)

Resistance patterns® No. of resistant isolates (%)/No. of pups that harboured resistant isolate (s) (%)

Total Kennel A Kennel B

(n = 86/43) (n = 50/25) (n = 36/18)
AMP-CFZ-CFT-OTC-CHL-NAL-ENR 5(5.8)/3 (7.0) 0 (0)/0 (0) 5(13.9)/3 (16.7)
AMP-DHS-GEN-KAN-OTC-CHL-SXT 3 (35)/2 (4.7) 3 (6.0)/2 (80) 0 (0)/0 (0)
AMP-DHS-GEN-OTC-CHL-NAL-SXT 1(1.2/1 (23) (2 0)/1 (4.0) 0 (0)/0 (0)
AMP-DHS-GEN-OTC-CHL-SXT 11 (12.8)/9 (20.9) 1 (22.0)/9 (36.0) 0 (0)/0 (0)
AMP-DHS-GEN-CHL-SXT 1(1.2/1 (2.3) (2 0)/1 (4.0) 0 (0)/0 (0)
AMP-DHS-OTC-SXT 2(23)/1 (23) 2 (40)/1 (4.0 0 (0)/0 (0)
AMP-DHS-CHL-SXT 1(1.2/1 (2.3) 1 (.0/1 (40) 0 (0)/0 (0)
AMP-DHS-SXT 16 (18.6)/13 (30.2) 8 (16.0)/8 (32.0) 8(222)/5 (27.8)
AMP-DHS-CHL 1(.2/1(23) 1 (.0)/1 (40 0 (0)/0 (0)
AMP-DHS 10 (11.6)/6 (14.0) 0 (0)/0 (0) 10 (27.8)/6 (33.3)
DHS-SXT 1(1.2/1 (2.3) 0 (0)/0 (0) 1(2.8)/1 (5.6)
AMP 1(1.2/1 (23) 1 (.0)/1 (4.0) 0 (0)/0 (0)
DHS 10 (11.6)/7 (16.3) 7 (14.0)/5 (20.0) 3(83)/2 (11.1)
oT1C 1(1.2/1 (23) 1 (2.0)/1 (40 0 (0)/0 (0)
NAL 1(1.2)/1 (23) 1 (2.0)/1 (40) 0 (0)/0 (0)
Susceptible 21 (244)/13 (30.2) 2 (24.0)/7 (28.0) 9 (25.0)/6 (33.3)

2AMP, ampicillin; CFZ, cefazolin; CEF, ceftiofur; DHS, dihydrostreptomycin; GEN, gentamicin; KAN, kanamycin; OTC, oxytetracycline; CHL, chloramphenicol; NAL,

nalidixic acid; ENR, enrofloxacin; SXT, trimethoprim-sulfamethoxazole.
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Figure 1 Dendrogram of pulsed-field gel electrophoresis (PFGE) profiles from 50 Escherichia coli isolates from 25 pups originating
from kennel A. A: Isolate origin. A-a, A-b, A-c, A-d, A-e, A-f, A-g, and A-h litters consisted of three (A-a-1 to A-a-3), three (A-b-1 to A-b-3), two
(A-c-1 to A-c-2), three (A-d-1 to A-d-3), four (A-e-1 to A-e-4), five (A-f-1 to A--5), three (A-g-1 to A-g-3), and two pups (A-h-1 to A-h-2),
respectively. Two isolates were obtained per pup.B: Resistance pattern. AMP, ampicillin; DHS, dihydrostreptomycin; GEN, gentamicin; KAN,
kanamycin; OTC, oxytetracycline; CHL, chloramphenicol; SXT, trimethoprim-sulfamethoxazole; NAL, nalidixic acid. C: PFGE profile.
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Figure 2 Dendrogram of pulsed-field gel electrophoresis (PFGE) profiles from 36 Escherichia coli isolates from 18 pups originating from
kennel B. A: Isolate origin. B-a, B-b, B-c, B-d, and B-e litters consisted of two (B-a-1 to B-a-2), four (B-b-1 to B-b-4), five (B-c-1 to B-c-5), three (B-d-1
to B-d-3), and four pups (B-e-1 to B-e-4), respectively. Two isolates were obtained per pup. B: Resistance pattern. AMP, ampicillin; CFZ, cefazolin; CEF,
ceftiofur; DHS, dihydrostreptomycin; GEN, gentamicin; OTC, oxytetracycline; CHL, chloramphenicol; SXT, trimethoprim-sulfamethoxazole; NAL,
nalidixic acid; ENR, enrofloxacin. C: PFGE profile. Five isolates with the B-2 PFGE profile harboured the SHV-12 ESBL-encoding gene.

litters B-a to B-e, respectively) shared at least one E. coli
clone, defined as an isolate with identical PFGE and
resistance phenotypic profiles, with one or more pups of
the same litters. There was no significant difference in
the clone sharing rates within the same litters between
the two kennels. In the two kennels, all pups of the
same litters, and their respective dams, were raised

together in one cage, implying that E. coli may be trans-
mitted horizontally via faeces. Another possibility may
be vertical transfer from mothers via their milk and
vaginal flora [14]. These data suggest that pups from the
same litter are likely to be exposed to common sources
of E. coli resulting in clonal spread of organisms, includ-
ing antimicrobial resistant isolates.
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The following 24 pups in the two kennels shared at
least one E. coli clone (i.e. the clones harbouring PFGE
profiles A-1, 2, 5, 11, 12, and B-9) among the different
litters; three, two, two, three, three, four, and one pups
of from litters A-a to A-g in kennel A, and four and
two pups of litters B-b and B-c, respectively. These lit-
ters were temporally separated (8-83 days) and origi-
nated from different mothers without direct contact,
suggesting that E. coli clones may have originated from
a persistent external source. One possibility, as sug-
gested by other studies, is that the pups acquired E.
coli from their human contacts [15,16]. Unlike clone
sharing rates among the same litters, the rates among
different litters were significantly different between
kennels A and B [18/25 (72.0%) vs. 6/18 (33.3%) pups,
respectively, P < 0.05]. This finding suggests that clone
sharing rates among different litters can vary between
kennels. Further study is needed to clarify the potential
transmission route(s) between kennel pups. Overall,
our data indicates that clonal spread of E. coli plays an
important role in acquisition of resistant isolates by
kennel pups.

The prevalence of ESBL-producing isolates in compa-
nion animals and their potential impact on human
health is a major issue [17]. In the present study, the
SHV-12 ESBL-encoding gene was detected in five iso-
lates (5.8%), exhibiting identical PFGE and resistance
phenotypic profiles, from three pups within a litter (Fig-
ure 2). The reason for the occurrence of these resistant
isolates was not apparent. To the best of our knowledge,
this is the first time that SHV-12 -lactamase has been
detected in E. coli of canine origin in Japan, although it
has been previously reported in other countries [18,19].
The present findings suggest that attention needs to be
paid to dogs as a potential reservoir of ESBL-producing
E. coli isolates in Japan.

In conclusion, our data show that pups in kennels can
harbour multidrug-resistant E. coli isolates, including
ESBL-producing isolates. The present results also indi-
cate that resistant and susceptible E. coli isolates can
clonally spread not only within the same litter but also
among different litters thus affecting the prevalence of
resistant organisms in a kennel. Further studies are
needed to fully understand the epidemiological spread of
antimicrobial resistant bacteria among pups in kennels.
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