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SagE induces highly effective protective immunity
against Streptococcus iniae mainly through an
immunogenic domain in the extracellular region
Yun Sun1,2, Li Sun1, Ming-qing Xing3, Chun-sheng Liu4 and Yong-hua Hu1*
Abstract

Background: Streptococcus iniae is a Gram-positive bacterium and a severe pathogen of a wide range of farmed
fish. S. iniae possesses a virulence-associated streptolysin S cluster composed of several components, one of which is
SagE. SagE a transmembrane protein with one major extracellular region named ECR. This study aimed to develop a
SagE-based DNA candidate vaccine against streptococcosis and examine the immunoprotective mechanism of
the vaccine.

Results: We constructed a DNA vaccine, pSagE, based on the sagE gene and examined its immunological property in
a Japanese flounder (Paralichthys olivaceus) model. The results showed that at 7 days post-vaccination, expression of
SagE at transcription and translation levels was detected in the tissues of the vaccinated fish. After challenge
with S. iniae at one and two months post-vaccination, pSagE-vaccinated fish exhibited relative percent survival
(RPS) of 95% and 88% respectively. Immunological analysis showed that (i) pSagE significantly upregulated the
expression of a wide range of immune genes, (ii) pSagE induced the production of specific serum antibodies
that bound whole-cell S. iniae, and (iii) treatment of S. iniae with pSagE-induced antibodies blocked bacterial invasion
of host cells. To localize the immunoprotective domain of SagE, the ECR-expressing DNA vaccine pSagEECR was
constructed. Immunization analysis showed that flounder vaccinated with pSagEECR exhibited a RPS of 68%,
and that pSagEECR induced serum antibody production and immune gene expression in a manner similar to,
though to lower magnitudes than, those induced by pSagE.

Conclusions: We in this study developed a DNA vaccine, pSagE, which induces highly protective immunity
against S. iniae. The protective effect of pSagE is probably due to its ability to elicit systemic immune response,
in particular that of the humoral branch, which leads to production of specific serum antibodies that impair
bacterial infection. These results add insights to the immunoprotective mechanism of fish DNA vaccine.
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Background
Streptococcus iniae is one of the common bacterial path-
ogens associated with disease outbreaks in farmed fish
[1,2]. It was first isolated from Amazon freshwater dol-
phin in the 1970s and has since become one of the lead-
ing fish pathogens [3]. S. iniae has a broad host range
and is known to affect at least 27 species of fish, which
include a large number of economically important spe-
cies such as rainbow trout, tilapia, sea bass, channel
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catfish, barramundi, and Japanese flounder [4-9]. In China,
streptococcal outbreaks have been reported in farmed
freshwater and marine fish, notably flounder, turbot,
tilapia, and red drum [10-14]. The frequency and out-
come of disease outbreak are influenced by culture and
environmental factors, and stress conditions, such as
intensive aquaculture operations and high temperature,
can lead to heavy stock mortality [15-17].
Experimental S. iniae vaccines in the forms of subunit

vaccines [10,18], DNA vaccines [19], and attenuated live
vaccines [20-23] have been reported by a number of re-
search groups. However, none of these vaccines have
been commercialized. To date, the only licensed vaccines
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Table 1 Primers used in this study

Primer Sequences (5′→ 3′)a

CNF1 CTTGCGTTTCTGATAGGCACCTA

CNR1 TGCGGGCCTCTTCGCTATT

ECRF1 CCCGGGACCGCCATGCGTTGCTTTCAAAA (SmaI)

ECRR1 GCTCCCGGGTAAGATAGCAAACCAT (SmaI)

ECRF2 CCCGGGATGCGTTGCTTTCAAAA (SmaI)

SagEF1 CCCGGGACCACCATGATTTTTGGAAAAAGTAGTAATGGA (SmaI)

SagER1 GCCCGGGCCTTCTTACCTTTGACTGAT (SmaI)

SagEF2 ATGGAAAACTTCTCACAGGACTC

SagECR GCTAACGCATTCAACCACAAA
aUnderlined nucleotides are restriction sites of the enzymes indicated in the
brackets at the ends.
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against S. iniae are bacterins consisting of inactivated
whole-cell bacteria. In tilapia, it has been reported that
killed bacterial cells combined with extracellular prod-
ucts produced effective protection [24]. Bacterins have
been used to immunize farmed fish in Israel, Australia,
Chile, and Spain [2,25,26]. However, the protectivity of
inactivated vaccines proved to be limited [27,28].
In China, studies on S. iniae vaccines have begun only

in recent years, and no licensed vaccines are available
for aquaculture use. In Shandong Province of east China,
S. iniae is recognized as a particularly severe pathogen
for flounder and turbot, which are the principal eco-
nomic fish species of the local area. In a previous study,
we reported the construction of S. iniae DNA vaccines
based on the sagF, G, and I genes of the streptolysin S
cluster, which is known to be involved in the virulence
of S. iniae [29-31]. We found that DNA vaccine plasmid
expressing each of these genes induced effective protec-
tion. Since the streptolysin S locus is composed of nine
genes, these observations led us to wonder whether
other components of the streptolysin cluster also possess
immunoprotective potential. To investigate this ques-
tion, we in this study developed a DNA vaccine based
on the sagE gene, another component of the streptolysin
S cluster. We examined the immune response induced
by SagE and its effect on bacterial infection. In addition,
we also localized the main immunogenic region of SagE.
Our results provide a useful vaccine candidate for the
control of S. iniae and add insights to the protection
mechanism of teleost DNA vaccines.

Methods
Sequence analysis
The amino acid sequence of SagE (GenBank accession
no. AF465842.1) was analyzed using the BLAST pro-
gram at the National Center for Biotechnology Informa-
tion and the Expert Protein Analysis System. Subcellular
localization was predicted with PSORTb version 3.0.2.
Signal peptide search was performed with SignalP 3.0.

Plasmid construction and preparation
The primers used in this study are listed in Table 1. To
construct pSagE, which expresses His-tagged SagE, sagE
was amplified by PCR with primers SagEF1 and SagER1.
The PCR product was inserted into pCN3 [32] at the
SmaI site. pCN3 is a plasmid derived from pCI-neo
(Promega, USA), a mammalian expression vector, and
contains the human cytomegalovirus immediate-early
enhancer/promoter, which promotes constitutive expres-
sion of cloned DNA inserts in mammalian cells, and the
late SV40 polyadenylation signal, which increases the
steady-state level of RNA. pSagEECR, which expresses
His-tagged ECR, was constructed in the same fashion with
the primer pair ECRF1/ECRR1. Endotoxin-free plasmid
DNA was prepared using EndoFree plasmid Kit (Tiangen,
Beijing, China). The purity of the purified DNA was ana-
lyzed spectrophotometrically by measuring absorbance at
A260/280 and A260/230. The integrity of the plasmid DNA
was assessed by agarose gel electrophoresis.
Fish
Japanese flounder (Paralichthys olivaceus) (average 11.2 g)
were purchased from a local fish farm and acclimatized in
the laboratory for two weeks before experimental manipu-
lation. Fish were fed daily with commercial dry pellets and
maintained at 20°C in aerated seawater. Before experi-
ment, fish (5% of the stock) were randomly sampled for
examination of bacterial recovery from blood, liver, kid-
ney, and spleen as reported previously [33], and no bac-
teria were detected. ELISA analysis indicated that the
randomly selected fish were negative of serum antibodies
against S. iniae.
Vaccination
All vaccine plasmids were diluted in PBS to 150 μg/ml.
For vaccination with pSagE, flounder were divided ran-
domly into three groups (N = 70) and injected intramus-
cularly (i.m.) with 100 μl pSagE, pCN3, or PBS. At one
and two months post-vaccination (pv), 25 fish were
taken from each group and challenged via intraperito-
neal (i.p.) injection with 100 μl S. iniae SF1 [10] that had
been cultured in Luria-Bertani broth (LB) medium at
28°C to OD600 0.8 and resuspended in PBS to 107 CFU/ml.
Vaccination with pSagEECR was performed in the same
fashion. For all vaccination trials, mortality was monitored
for 20 days, and dying fish were randomly selected for
examination of bacterial recovery from liver, kidney,
and spleen by plate count as described previously [33].
Relative percent survival (RPS) was calculated as de-
scribed previously [34]. All vaccination trials were re-
peated once, and the mean mortality and RPS were
given in the results.
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Detection of plasmid DNA and vaccine gene expression
Muscle, kidney, liver, and spleen were taken from vacci-
nated fish at 7 days pv. For plasmid detection, DNA was
extracted from the tissues with the TIANamp DNA Kit
(Tiangen, Beijing, China) and used for PCR analysis with
the primer pairs CNF1/SagER1 or CNF1/CNR1 (Table 1).
To detect vaccine gene transcription, total RNA was ex-
tracted and used for reverse transcription-PCR (RT-PCR)
as described previously [32] with α-tubulin as a reference
[35]. Detection of vaccine protein by immunocolloidal
gold electron microscopy was performed as reported
previously [32].

Purification of recombinant protein
To obtain recombinant ECR (rECR), the plasmid pECR,
which expresses ECR linked to a protein tag (Trx-tag)
derived from the backbone plasmid pET32a (Novagen,
San Diego, USA), the coding sequence of ECR was amp-
lified by PCR with primers ECRF2 and ECRR1 (Table 1),
and the PCR product was inserted into pET32a at the
EcoRV site. Recombinant ECR (rECR), which was used
for ELISA assay, was purified with nickel-nitrilotriacetic
acid agarose (QIAGEN, Valencia, USA) according to
manufacturer’s instructions. The purified protein was di-
alyzed for 24 h against phosphate-buffered saline (PBS)
and concentrated using Amicon Ultra Centrifugal Filter
Devices (Millipore, Billerica, MA, USA). The protein was
analyzed by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and visualized after staining
with Coomassie brilliant blue R-250 [see Additional file 1].

Enzyme-linked immunosorbent assay (ELISA)
Sera were collected from the vaccinated fish at one and
two months pv and diluted 20 times in PBS. Serum anti-
bodies against rECR was determined by ELISA, which was
performed as reported previously [36]. Briefly, 96-well
ELISA plates (Sangon, Shanghai, China) were coated with
0.05% (w/v) poly-L-lysine in coating buffer (0.159%
Na2CO3, 0.293% NaHCO3, pH 9.6) for 1 h, followed by
washing the plates 3× with coating buffer. The plates
were then coated with 100 μl/well purified recombin-
ant protein dissolved in coating buffer (10 μg/ml) and
incubated at 4°C for overnight. The plates were washed
3× with coating buffer and coated with 1% bovine
serum album (BSA) at 22°C for 2 h, followed by wash-
ing 3× with PBST (0.1% Tween-20 in PBS). Diluted
sera were added in triplicate to the wells of the plates.
After incubation at 37°C for 2 h and washing with
PBST, mouse anti-flounder IgM monoclonal antibody
(Aquatic Diagnostic Ltd, Stirling, Scotland, UK) was added
to the plates. The plates were incubated and washed as
above. Horse-radish peroxidase-conjugated goat anti-
mouse IgG (Bios, Beijing, China) was added to the plates.
Color development was performed with the TMB Kit
(Bios, Beijing, China). The plates were read at 450 nm
with a Precision microplate reader (Molecular Devices,
Canada).
Quantitative real time RT-PCR (qRT-PCR) to examine im-
mune gene expression
Spleen was taken from the vaccinated fish at 24 h post-
challenge. Total RNA extraction was performed as de-
scribed above. qRT-PCR was carried out using the SYBR
ExScript qRT-PCR Kit (Takara, Dalian, China) as described
previously with α-tubulin as an internal reference [37].
Binding of vaccine-induced antibodies to bacterial cells
S. iniae SF1 was cultured as above and resuspended in
PBS to 108 CFU/ml. Fifty microliters of serum from
pSagE- or pCN3-vaccinated fish was added to 0.5 ml S.
iniae suspension, and the cells were incubated at 22 C
for 1 h. The cells were collected by centrifugation, washed
with PBS, and resuspended in 1 ml PBS. Mouse anti-
flounder IgM monoclonal antibody (Aquatic Diagnostic,
Scotland, UK) (1/100 dilution) was added to the cells. The
cells were incubated, washed, and resuspended in PBS
as above. Fluorescein isothiocyanate (FITC)-labeled
goat anti-mouse IgG (Bios, Beijing, China) (1/1000 di-
lution) was added to the cells. The cells were incu-
bated, washed, and resuspended in PBS as above. Two
hundred microliters of cell suspension was dropped
onto a glass slide and observed with a fluorescence
microscope (Nikon E800, Japan).
Effect of pSagE-induced antibodies on S. iniae infection
Flounder FG-9307 cell line was cultured at 22 C in 96-well
cell culture plates with Eagle’s minimum essential medium
(MEM) (GIBCO, Invitrogen, USA) as described previously
[38]. For cellular infection, S. iniae SF1 in PBS (108 CFU/ml)
was mixed with serum from pSagE- or pCN3-vaccinated
fish (1/10 dilution) at an equal volume. The mixture was in-
cubated at room temperature for 0.5 h, and 10 μl of the
mixture was added to each well of FG cells. The plates were
incubated at 30 C for 4 h and washed three times with PBS.
The cells were lysed with 1% Triton X-100, and 50 μl lysate
was plated in triplicate on LB agar plates. After incubation
at 30 C for 48 h, the colonies that appeared on the plates
were counted.
Statistical analysis
All statistical analyses were performed with the SPSS
17.0 package (SPSS Inc., Chicago, IL, USA). Chi-square
test with Yates’ correction was used for mortality ana-
lysis, and analysis of variance (ANOVA) was used for all
other analyses. In all cases, the significance level was de-
fined as P < 0.05.
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Results
Sequence characterization of SagE
SagE is composed of 220 residues and predicted to be a
cytoplasmic membrane protein. It contains a signal pep-
tide (residues 1 to 25), two membrane-spanning regions
(residues 39 to 61 and 74 to 96), and one major extracel-
lular region (residues 97 to 143), which, for convenience,
was named ECR [see Additional file 2].
Vaccine plasmid construction and expression of the
vaccine gene in fish tissues following immunization
A SagE-expressing DNA vaccine, pSagE, was constructed.
To examine the immunoprotective potential of pSagE,
flounder were vaccinated with pSagE, the control vector
pCN3, or PBS. At 7 days pv, PCR and RT-PCR were con-
ducted to examine the presence of the vaccine plasmid
and transcription of the vaccine gene respectively in
muscle, kidney, liver, and spleen. The results showed that
PCR detected pSagE and pCN3 in pSagE- and pCN3-
vaccinated fish respectively but not in PBS-vaccinated fish,
while RT-PCR detected sagE mRNA in pSagE-vaccinated
fish only (Figure 1 and data not shown). To examine
whether SagE protein was produced in the vaccinated fish,
Figure 1 Detection of vaccine plasmids (A) and expression of the vac
vaccinated with pSagE (lanes 3, 5, 7, and 9) or pCN3 (lanes 2, 4, 6, and 8). A
(lanes 2 and 3), spleen (lanes 4 and 5), liver (lanes 6 and 7), and kidney (lan
was performed using primers specific to pSagE or pCN3. RT-PCR was perfo
(C). Lane 1, DNA markers.
immunocolloidal gold electron microscopy was carried
out, which detected SagE protein in the muscle tissues of
pSagE-vaccinated fish but not in pCN3- or PBS-
vaccinated fish (Figure 2 and data not shown).
Protection induced by pSagE
The vaccinated fish were challenged at one and two
months pv with S. iniae and monitored for mortality.
The results showed that the accumulated mortalities of
pSagE-, pCN3-, and PBS-vaccinated fish were 4%, 76%,
and 82% respectively at one month pv, and 10%, 72%,
and 80% respectively at two months pv. Hence, with PBS
as a control, the RPS rates of pSagE-vaccinated fish were
95% and 88% at one and two months pv respectively.
Immune response induced by pSagE
Expression of immune genes
To investigate whether pSagE vaccination affected gene
expression, qRT-PCR was conducted to examine the tran-
scription level of immune genes in the spleen of pSagE-
and pCN3-vaccinated fish at 24 h post-challenge. The
immune genes examined were interleukin (IL)-1β, IL-6,
IL-8, tumor necrosis factor alpha (TNF-α), interferon
cine-encoding genes (B and C) in fish tissues. (A) Flounder were
t 7 days post-vaccination, DNA and RNA were extracted from muscle
es 8 and 9) and used for PCR (A) and RT-PCR (B and C) analysis. PCR
rmed using primers specific to sagE (B) or α-tubulin (internal reference)



Figure 2 Detection of SagE in vaccinated fish. Muscle tissues were taken from flounder vaccinated with pSagE (A) and pCN3 (B) at 7 days
post-vaccination and used for immunocolloidal gold electron microscopy with gold-labeled antibody. Arrows indicate gold
particles. Bar = 100 nm.
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(IFN)-γ, interferon-induced Mx protein, natural killer en-
hancing factor (NKEF), complement C3, immunoglobulin
M (IgM) and D (IgD), major histocompatibility complex
(MHC) class Iα and class IIα, CD40, and CD8α. The re-
sults showed that compared to control fish, fish vaccinated
with pSagE exhibited significantly enhanced expression of
all examined genes, with relatively high levels of induction
(more than 5-fold) observed with TNF-α, IFN-γ, NKEF,
C3, IgM, IgD, MHC Iα, MHC IIα, and CD40 (Figure 3).
Serum antibody production
ELISA showed that at one month pv, fish vaccinated
with pSagE produced serum antibodies that recognized
recombinant ECR (rECR) (Figure 4). A comparable level
of antibody production was detected in pSagE-vaccinated
fish at two months pv. No serum antibodies against rECR
were detected in pCN3-vaccinated fish.
Figure 3 Expression of immune genes in vaccinated fish. Flounder we
taken from the fish at 24 h post-challenge. Total RNA was extracted from t
the mRNA level of the control fish was set as 1. Data are presented as mea
Interaction between serum antibodies and bacterial cells
Since SagE was predicted to be a membrane-localized pro-
tein, we examined whether it could be recognized in its
natural state in S. iniae by pSagE-induced antibodies. For
this purpose, live S. iniae was incubated with the serum
from pSagE- or pCN3-vaccinated fish. The cell-bound
antibodies were detected by FITC-labeled antibody.
Microscopic examination showed that fluorescence was
observed on the bacteria that had been treated with the
serum from pSagE-vaccinated fish but not on the bacteria
that had been treated with the serum from pCN3-
vaccianted fish (Figure 5).
Effect of pSagE-induced antibodies on bacterial infection
To further examine whether pSagE-induced antibodies
had any effect on S. iniae infection, the bacteria were
treated with the serum from pSagE- or pCN3-vaccianted
re vaccinated with pSagE, pSagEECR, or pCN3 (control). Spleen was
he spleen and used for quantitative real time RT-PCR. For each gene,
ns ± SE (N = 3). *P < 0.05; **P < 0.01.



Figure 5 Interaction between vaccine-induced antibodies and bacterial c
fish (A and C) or with serum from control fish (B and D). Cell-bound antibodie
under a microscope with (A and B) or without (C and D) fluorescence.

Figure 4 Serum antibody production in vaccinated fish. Sera
were taken from flounder vaccinated with pSagE, pSagECR, and PBS
(control). Serum antibodies against ECR were determined by ELISA.
Values are shown as means ± SE (N = 5). *P < 0.05; **P < 0.01.
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fish before being used for infection of flounder FG cells.
The number of bacterial cells that succeeded in infection
was subsequently determined. The results showed that com-
pared to treatment with pCN3-induced serum, treatment
with pSagE-induced serum significantly reduced (6.4-fold
lower) the number of S. iniae recovered from FG cells [see
Additional file 3].
Localization of the immunoprotective region of SagE
Since ECR is the major extracellular region of SagE, we
examined its immunoprotective potential. For this pur-
pose, flounder were vaccinated with pSagEECR, which
expresses His-tagged ECR, pCN3, or PBS. At 7 days pv,
RT-PCR detected the mRNA of ECR in the muscle,
spleen, and kidney of pSagEECR-vaccinated fish, while
immunocolloidal gold electron microscopy detected ECR
protein in the muscle tissues of pSagEECR-vaccinated fish
(data not shown). After challenging with S. iniae at one
ells. Streptococcus iniae was incubated with serum from pSagE-vaccinated
s were detected with FITC-labeled antibody. The cells were observed
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month pv, the accumulated mortalities of pSagEECR-,
pCN3-, and PBS-vaccinated fish were 23%, 62% and 72%
respectively. Hence, the RPS rate of pSagEECR was 68%
with PBS as a control.
ELISA showed that fish vaccinated with pSagEECR

produced specific serum antibodies, but the antibody
level was significantly lower than that in fish vaccinated
with pSagE (Figure 4). qRT-PCR analysis showed that
pSagEECR-vaccinated fish exhibited significantly enhanced
expression of IL-1β, IL-6, TNF-α, IFN-γ, Mx, NKEF, com-
plement C3, IgM, IgD, MHC Iα, MHC IIα, and CD40
(Figure 3); however, the induction folds of IL-6, IFN-γ,
IgM, and IgD were lower than those in pSagE-vaccinated
fish.

Discussion
It is known that in teleost, as in mammals, DNA vac-
cine plasmids administered via i.m. injection are trans-
ported to internal tissues, and the exogenous vaccine
genes are expressed via the host’s expression system
[39-41]. Likewise, in our study we found that following
vaccination of flounder with pSagE, sagE mRNA and
SagE protein were detected in multiple tissues at
7 days pv, suggesting that the DNA plasmid was taken
up by host cells in local and distal tissues, where the
sagE gene was successfully expressed. After challenge
with S. iniae at one month pv, fish vaccinated with
pSagE exhibited 95% survival, suggesting that an ef-
fective protective immunity was induced by pSagE in
the vaccinated fish. At two months pv, pSagE-vaccinated
fish displayed a RPS of 88%, which is comparable to that
at one month pv, suggesting that the protective effect of
pSagE lasted without significant decline for at least two
months.
Compared to other types of vaccines, DNA vaccine

possesses the advantage of being able to elicit sys-
temic immune response of both the humoral and the
cellular arms [42,43]. In the case of pSagE, qRT-PCR
analysis showed that fish vaccinated with pSagE ex-
hibited significantly enhanced expression of a range
of genes, notably TNF-α, IFN-γ, NKEF, C3, IgM, IgD,
MHC Iα, MHC IIα, and CD40, suggesting that in vivo
expression of SagE stimulated innate and adaptive
immunity. In line with the elevated expression of
IgM, ELISA detected production of SagE specific
serum antibodies in the vaccinated fish. Immuno-
fluorescence microscopy showed that the antibodies
from pSagE-vaccinated fish were able to bind live S. iniae,
suggesting that SagE is naturally exposed on the cell sur-
face of S. iniae.
Cellular infection analysis showed that when S. iniae

was treated with pSagE-induced serum before incubation
with FG cells, the number of bacteria recovered from the
infected host cells was significantly reduced compared to
that of the S. iniae pre-treated with the control serum.
These results suggest that interaction between anti-SagE
antibodies and the SagE on the surface of S. iniae inhibits
S. iniae infection. Given the known involvement of strep-
tolysin in S. iniae virulence [28,30], our results support
the hypothesis that the immunoprotectivity of pSagE is
probably due at least in part to its ability to induce
production of specific serum antibodies, which, upon
encountering S. iniae during subsequent infection, may
inhibit the function of SagE and thus block S. iniae in-
fection. Since ECR is the major extracellular region, we
examined its potential protective effect. We found that
the ECR-expressing DNA vaccine pSagEECR produced
a RPS of 68%, suggesting that ECR contributes import-
antly to the protective effect of SagE. These results are
consistent with those of ELISA analysis, which detected
production of specific serum antibodies in pSagEECR-
vaccinated fish, and qRT-PCR analysis, which showed that
the expression patterns of immune genes induced by
pSagEECR were largely similar to those induced by
pSagE. However, both the antibody level and the mag-
nitude of gene induction in pSagEECR-vaccinated fish
were lower than those in pSagE-vaccinated fish, which
may account for the lower protection of pSagEECR
(compared to pSagE) and also suggest that in addition
to ECR, there exit other immunogenic regions that are
required to induce the full protective immunity ob-
served with pSagE.
Conclusion
In conclusion, we in this study developed a DNA vac-
cine, pSagE, which induces highly protective immunity
against S. iniae. The protective effect of pSagE is prob-
ably due to its ability to elicit systemic immune re-
sponse, in particular that of the humoral branch, which
leads to production of specific serum antibodies that im-
pair bacterial infection. These results not only provide
an effective candidate vaccine against streptococcosis
but also add insights to the immunoprotective mechan-
ism of teleost DNA vaccine.
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