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Abstract 

Background:  Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies 
persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions con-
sidered enzootic for the virus, such as the interior of the state and urbanized regions.

Results:  Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a 
geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious esti-
mate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify 
ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifi-
cally, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological 
niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction 
of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a 
changing climate.

Conclusions:  Our results may help to better inform public health decisions in the future and guide further studies on 
individual drivers of rabies distribution in the Arctic.
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Background
Rabies is a global zoonotic disease that lacks satisfac-
tory treatment and kills 50,000–70,000 people annually, 
mostly in developing countries where dog-associated 
rabies is not well controlled [1]. In developed countries 
rabies among wild animals poses a threat to human 
health through direct contact with infected wildlife or 
through the infection of unvaccinated dogs, and cats [2]. 
The economic burden of rabies is significant even in areas 
without large numbers of human rabies cases due to the 
costs of prevention efforts and required infrastructure 
[1].

In the circumpolar region the arctic fox (Vulpes lago-
pus) is considered the primary maintenance host for 
rabies [3]. The arctic fox has been displaced in some 
regions by the red fox (Vulpes vulpes) presumably driven 

by anthropogenic change [4–6]. However, this trend is 
not found in all regions of the Arctic [7].

In Alaska, rabies is of significant concern to public 
health, particularly in the face of environmental change 
[8], see also Additional file 1 for detail on human health 
implications. Enzootic rabies (defined as always being 
present at a certain level) is believed to be primarily lim-
ited to northern and western coastal regions of Alaska 
that have only limited human development [9]. Occasion-
ally epizootic rabies occurs in interior regions of Alaska 
[10]. Although the exact extent of enzootic regions is 
unknown. Large urban settlements such as the cities 
of Anchorage, Fairbanks and Juneau, are not directly 
affected by enzootic rabies apart from occasional impor-
tation of the disease through translocation of infected 
dogs from enzootic rural areas (for an example see [11]). 
The regions of Alaska with the highest burden of rabies 
cases in both wildlife and domestic dogs, like many other 
remote arctic communities, generally lack adequate 
veterinary care and dog vaccination. In addition, the 

Open Access

Acta Veterinaria Scandinavica

*Correspondence:  khueffer@alaska.edu 
3 Department of Veterinary Medicine, University of Alaska Fairbanks, 901 
Koyukuk Drive, PO Box 757750, Fairbanks, AK 99775, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13028-017-0285-0&domain=pdf


Page 2 of 11Huettmann et al. Acta Vet Scand  (2017) 59:18 

true burden of rabies, especially in foxes is not known, 
because diagnostic testing is generally limited to inci-
dents of possible human exposure and animals suspected 
of having rabies in regions considered non-enzootic. 
There is little active surveillance of rabies among wildlife 
in enzootic regions of Alaska. The majority of rabies test-
ing occurs only in close proximity to human infrastruc-
ture. Industrial developments in remote areas are known 
to enhance invasive species, including diseases (see [12] 
for invasive species in Alaska) and can provide significant 
attractions to wildlife through food subsidies, as well as 
olfactory or light stimuli [13, 14].

Rabies dynamics in Alaska are characterized by cycli-
cal increases in reported cases with 4–5  year intervals 
[15] (Fig.  1). During the period from 2000 to 2014, 272 
animals were reported positive for rabies by the Sec-
tion of Epidemiology for the State of Alaska in their 
annual disease reports [16–23]. Ninety-nine percent of 
these rabies-positive animals originated in Northern 
and Southwestern Alaska that are considered enzootic 
for wildlife rabies. In contrast South-central and parts 
of central interior Alaska did not contribute any cases of 

rabies in terrestrial mammals. The spread of arctic vari-
ant rabies into areas previously not affected poses a risk 
even in the more populated areas of Alaska. This can be 
seen by the spread of arctic variant-rabies into southern 
Ontario for instance [24].

Both red and arctic foxes are frequently diagnosed 
with rabies, but red foxes are diagnosed with rabies more 
often than arctic foxes [15]. Within Alaska the rabies 
virus is maintained as three distinct genetic variants [25, 
26]: Arctic rabies variants 2, 3 and 4. The general spatial 
distribution of these variants seems to be stable [25–27]. 
The biogeography and mechanism of maintaining at least 
three distinct strains over time is not well understood 
[27]. However, the population structure of arctic foxes 
appears to be more closely related to the distribution of 
rabies variants compared to the population structure of 
red foxes. It suggests that the mesocarnivore arctic fox is 
the maintenance host, while the red fox serves as a fre-
quent spillover host for this virus. Alternatively, the red 
and arctic fox provide a dynamic multi-host maintenance 
system for arctic rabies virus variants in Alaska [27]. 
The consequences on rabies dynamics of a supposedly 

Fig. 1  Diagnosed rabies cases over time in animals and people. Blue bars represents reported cases according to the annual infectious disease 
reports (1973–2014) published by the Section of Epidemiology for the State of Alaska. The red bar represents cases used to train our models (Addi-
tional file 2) and the green bars represents the cases included in testing our models (Additional file 3)
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increased displacement of arctic foxes by red foxes is 
not known [28]. However Kutz provides examples for 
increased disease in Northern regions, mainly parasitic 
infections, associated with extreme weather events and 
warmer temperatures [29]. Similar dynamics could also 
hold true for rabies at high latitudes.

Some examples of increased disease transmission in the 
circumpolar North due to a changing climate have been 
described [30]. With climate change predicted to be more 
extreme at high latitudes, e.g. 10 or more degrees Celsius 
temperature increase during the next 100 years [31], it is 
imperative to base future public health decisions on the 
best available data and predictions [32]. This should be 
guided by public access, transparency, repeatability, as 
well as a thorough and justifiable understanding of the 
ecological niche occupied by the disease of concern [33].

Because of a sampling effort bias towards human devel-
opment and under-sampling of animals for rabies diag-
nostics from remote areas, a complete picture of the 
presence and prevalence of rabies does not yet exist for 
Alaska. To overcome such problems, predictive mod-
eling emerged as a powerful method, based on empirical 
data and best-available science ([34] for rabies; for other 
examples see [35–38]). Organisms, including pathogens 
and their hosts, are bound by a certain ecological niche 
[32, 33, 39]. Describing and predicting the ecological 
niche of a disease can greatly help to further our under-
standing of pathogen dynamics, even in the face of lim-
ited sampling [40, 41].

Following best practice and state-of-the art methods 
[33, 34, 38, 41, 42], this investigation tried to define the 

quantitative envelope of the ecological niche for rabies in 
the Arctic using Alaska as a test case. We carried out such 
an analysis with an ecological niche model using machine 
learning algorithms, based on geographical information 
systems (GIS) and publicly available environmental data, 
applied to presence only locations of compiled rabies 
detections.

Methods
Publically available information on 153 diagnosed 
rabies cases from 1914 to 2013, in terrestrial mammals 
was compiled and manually divided into a stratum that 
occurred in areas considered enzootic by the State of 
Alaska Section of Epidemiology, and a second stratum 
diagnosed outside this enzootic area [9] (Additional 
file  2). The classification of enzootic or non-enzootic 
greatly influences rabies control measures. An independ-
ent set of recent diagnosed rabies cases (Additional file 3) 
was used to compare different approaches.

Rabies cases were model-predicted with machine 
learning algorithms comparing them to pseudo-absences 
(created randomly in GIS for Alaska). Classification and 
regression trees (CARTs)- based boosting and bagging 
(TreeNet, RandomForest, SPM7, Salford Systems Ltd) 
using the ‘default’ settings for those models because they 
are specifically designed for presence data, data mining 
(see Table 1 for details) were used to model the ecological 
niche of rabies in Alaska. These model settings general-
ize best for data such as used here (https://www.salford-
systems.com/products/treenet) [33, 35]. Because these 
models employ ‘recursive partitioning’ the models are 

Table 1  Settings and explanations of the TreeNet model run

Metric Setting Effect Justification

Learnrate AUTO A detailed but slow model run Known to provide best results for the 
algorithm ‘learning’ data

Subsample fraction 50% Internal testing while model is grown Standard approach for balanced tree 
models

Logistic residual trim fraction 0.10 Fine-tuning Allows for better fits

Huber-M fraction of error squared 0.90 Accuracy level A statistical standard threshold for 
certainty

Optimal logistic model selection Cross entropy How to find the optimal model Usually the best setting for tree-based 
models

Number of trees to build 1000 Number of trees tried out for the best 
solution

This number should widely overshot 
the known optimum

Maximum number of nodes 6 Determines the node depth of trees 
used

This number determines whether a 
‘stump’ or a fully fit tree is run

Terminal node minimum training 
cases

10 For most data cases it provides a 
robust tree

Number of cases for each tree branch 
split

Maximum number of most-optimal 
models to save summary results

1 Just 1 most-optimal model is saved

Regression loss criterion Huber-M (Blend LS and LAD) A statistical metric to express gain vs 
cost of a new rule

Standard approach in trees

https://www.salford-systems.com
https://www.salford-systems.com
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rather robust for correlations and interactions, as judged 
by high AUC ROCs and assessment metrics [33].

The environmental layers used are shown in Table  2. 
These model layers are known to contribute to the eco-
logical niche, and also act as a proxy to inquire further 
if deemed relevant in future studies. In addition, these 
layers are currently ‘the best available GIS layers for the 
state of Alaska [35, 43, 44].

For improved inference and validity, models should 
be assessed for their predictive performance in order to 
express their reliability [33, 40]. AUC ROC inherent in 
Salford Predictive Modeler (SPM) was one performance 
metric used. Machine learning approaches, as used 
in this study, express the ecological niche as a relative 
index of occurrence (RIO) visualized in the figures along 
a quantitative (color) gradient, red-yellow-green. Red 
is essentially high RIO, yellow is a mid range value, and 
green is low RIO.

Finally, in order to better predict the distribution of 
rabies in Alaska for the future, the climate niche models 
of rabies was predicted to 2050, using regionalized IPPC 
climate models for Alaska. Predictors for this model of a 
possible future rabies niche are limited to climate ones 
because Alaska still lacks reliable and available planning 
scenarios for the future explicit in space and time for land 
cover and its socio-economic features [45, 46]. 2050 was 
used as a more realistic and testable ‘future’, and thus 
having a real-world application.

Results
This study provides for the first time publically avail-
able data of 153 confirmed rabies cases from 1914 to 
2013 with different degrees of geo-referencing quality. 
This data set is available in Additional file 2 and from the 
authors upon request (sensu Zuckerberg [47]). This data-
set is an essential part of the result. The cases of terres-
trial rabies (excluding 2 bat cases) were divided into two 
subsets: confirmed animal rabies cases from the area of 
Alaska considered enzootic for rabies, and areas not con-
sidered enzootic (Fig. 2). The latter cases were considered 
associated with sporadic epizootics. Most of these epizo-
otic associated cases were temporally associated with a 

large-scale outbreak in interior Alaska during the 1950s 
[10]. Using these data sets machine learning algorithms 
were utilized to build the following three ecological niche 
models each for a test which provides us the best gener-
alization for Alaska: models were informed by (a) only 
cases from areas considered enzootic for rabies (enzootic 
cases), (b) only cases from non-enzootic areas (outbreak 
cases), and (c) all confirmed rabies cases. Utilizing these 
three approaches models were created and assessed for 
performance, and then predicted risk maps for rabies 
detection in Alaska were generated. ‘Risk’ is defined here 
as pixels with a relative index of occurrence of rabies, as 
predicted from the model [35, 41].

These maps of the relative index of occurrence varied 
somewhat, depending on the capability of the algorithm 
employed and on the data used to inform the model. 
However, all models predicted the northern coastal areas 
as high-risk areas for the detection of rabies, which is 
even true for models only informed by outbreak-asso-
ciated samples, which excluded samples from this area. 
Another area consistently identified among all models 
is located south of the Brooks Range east of Chandalar 
Lake (Eastern Yukon River Basin). This area is of inter-
est because cases from that region were not included in 
the data set that informed the model based on enzootic 
cases. However, this area was involved in the outbreak 
in the middle of the twentieth century [10] and it has 
recently seen isolated cases of rabies at its western most 
boundary [48].

To better compare the different approaches, the mod-
els were confronted with a compiled set of recent rabies 
cases detected by the Alaska State Public Health Labora-
tory (Fig. 3). The model based on the TreeNet algorithm 
and informed by all available rabies cases in our data set 
performed best (Fig. 4; Additional file 4). The remainder 
of the result section will therefore focus on this model for 
inference.

This TreeNet-based model identified large areas north 
of the Brooks Range and areas south along the coast into 
the Yukon Kuskokwim Delta as areas at highest risk for 
rabies detection in the state. Interestingly, while the East-
ern Yukon River Basin was identified as a high-risk area 

Table 2  Predictors of rabies in Alaska and for assembling the ecological niche

For public data sources see [43, 44]

Predictor Source Comment

Euclidean distance to Alaska coastline Alaska GAP data Obtained with ArcGIS tools

Euclidean distance to Alaska infrastructure Alaska GAP data Obtained with ArcGIS tools

Elevation Alaska GAP data

Monthly mean temperature Alaska GAP data (taken from SNAP)

Monthly mean precipitation Alaska (taken from SNAP)
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Fig. 2  Alaska map and location of diagnosed rabies cases used to build models. Cases classified as enzootic is indicated in black and epizootic 
cases in purple. Settlements and road infrastructure is shown in grey

Fig. 3  Alaska map and location of diagnosed rabies cases data to assess model performance. Seventy three locations were used, representing 127 
diagnosed cases to assess the models
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for rabies and the mouth of that river is also identified 
with the high-risk area to the West, the middle section of 
this major river in Alaska was not identified as an area of 
high probability for rabies detection. Terrestrial rabies is 
widely predicted to be absent in southern Alaska, except 
for the major population center of Anchorage.

The best performing model identified distance to infra-
structure, elevation, distance to coast, precipitation in 
June, and precipitation in February as predictors most 
important in defining the ecological niche (Table 3).

A model built in TreeNet using only climate vari-
ables had a lower performance than the model build on 

Fig. 4  a Best TreeNet model (pooled data) prediction of rabies in Alaska. Colors show relative index of occurrence (RIO), where red is high RIO, yel-
low is mid range RIO and green is low RIO; rabies used to build the model are overlaid for overview. Letter indicate regions of special interest in the 
model output: A Brooks Range, B Eastern Yukon Basin, C Lower Yukon/Yukon Delta, D Middle Yukon. b The same RIO map classified into a presence/
absence scheme. Rabies cases used to build the model are indicated in black and purple; (see Fig. 1a) and assessment data in blue) are overlaid for 
overview
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all predictors (namely the human infrastructure ones). 
However, it repeated the general results, also identifying 
similar areas of the state with some extended areas in the 
Yukon-Kuskokwim Delta compared to a model including 
non-climate variables.

Unfortunately, we lack any reliable planning and fore-
cast maps and models of infrastructure for Alaska. While 
those exist for many climate variables [46] they are not 
available for future development of human infrastruc-
ture. We therefore utilized only this climate-based eco-
logical niche model for starting to explore the possible 
effects of climate change, such as warming in the Arctic 
and altered precipitation, on the rabies risk distribution 
in Alaska for the predicted climate scenario in 2050. As 
done elsewhere [14], we employed an ecological niche 
model projecting the climate-based niche onto climate 
data predicted for the year 2050 using the regionalized 

IPCC climate model from SNAP (A1B1 scenario). This 
resulted in a significantly reduced area of predicted 
future risk of rabies detection, especially in the southern 
areas of current rabies risk prediction (Fig. 5).

Discussion
Disease prediction is a common effort that can increase 
understanding of disease ecologies, especially in remote 
areas [32, 35, 41, 49, 50]. Our approach to better under-
stand rabies dynamics in the circumpolar region 
becomes possible due to publically available and shared 
data of confirmed rabies cases, as well as environmental 
GIS layer predictions and non-parsimonious algorithms. 
This modeling effort identified several geographic areas 
of predicted risk for rabies detection. Further, variables 
were identified by our modeling approach that influenced 
the distribution of rabies detection throughout the State, 
specifically the relevance of human infrastructure. A 
major limitation of our modeling approach was the way 
most of the data informing the model were collected. 
Rabies testing in Alaska is largely performed by the 
public health system with a focus, and consequent bias, 
towards human exposures. Vast areas in Alaska such as 
wilderness areas remain largely unstudied for wildlife 
diseases including rabies. Because of this, knowledge of 
rabies distribution and ecology Alaska is rather poor and 
biased through a human-focused detection system. The 
current pragmatic focus on possible human exposure 
could skew our model towards ignoring the true role of 
areas further away from human infrastructure as a vari-
able responsible for majorly influencing the predicted 
presence of wildlife rabies. However, if one considers 
our models as an approach to determine possible risk for 
humans to encounter the rabies virus, this possible bias 
will still be very reflective of a threat to human health. On 
the other hand, this bias is likely leading to an underes-
timation of rabies cases in Alaska. It is still limiting our 
ability to identify additional variables influencing rabies 
distribution in remote areas that are relatively unaffected 
by human activity. Arguably, one wants to know and use 
as many predictors as possible to test and describe rabies 
outbreaks, instead of just a parsimonious one.

Our modeling approach provides predictions explicit in 
space and time and does not attempt to elucidate direct 
causal relationships between identified predictors and 
rabies risk. For example, the identified climate variables 
likely influence rabies occurrence indirectly through 
effects on wildlife populations rather than direct effect 
on virus particles or replication of the virus. However, 
identifying these predictors without detailed knowledge 
on mechanisms is still important to describe the niche 
and help focus public health efforts in a spatially explicit 
form. Large uninhabited areas of Alaska within or 

Table 3  TreeNet variable importance of  parameters uti-
lized in  best performing model (148 Alaska rabies data 
locations pooled regardless of  outbreak or enzootic loca-
tions)

The variables are listed by importance together with their relative score in 
informing the model on the likelihood of rabies occurrence

Variable Score

Distance to infrastructure 100.00

Elevation 56.09

Distance to coast 31.95

Precipitation June 30.63

Precipitation February 21.78

Precipitation October 20.28

Temperature October 20.27

Precipitation March 19.22

Precipitation May 18.64

Temperature April 18.49

Precipitation August 18.29

Temperature December 17.68

Temperature February 17.56

Precipitation April 16.89

Precipitation July 16.77

Precipitation September 16.47

Precipitation December 14.99

Precipitation January 13.40

Temperature August 13.13

Temperature November 12.93

Temperature January 12.50

Temperature May 11.64

Temperature March 10.25

Precipitation November 9.44

Temperature September 8.89

Temperature June 8.64

Temperature July 5.62
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adjacent to areas considered enzootic for rabies virus are 
not systematically surveyed. This limits our ability to fully 
understand the ecological drivers of this important dis-
ease. In addition, information on possible variables at an 
appropriate landscape level, such as density of reservoir 
and spillover hosts is needed to better model the ecologi-
cal drivers of rabies distribution in Alaska. An additional 
limitation is the possible misdiagnosis of other diseases 

(such as canine distemper in foxes) as rabies, especially 
for cases in the early stages of disease. However, as these 
cases follow a similar pattern to more recent cases we see 
this as a minor limitation only.

Our rabies forecast for the state into the future using 
climate models for 2050 shows a decay of the Arctic 
rabies niche for the arctic rabies variants. However, we 
currently lack any information on how rabies variants 

Fig. 5  Climate niche predictions of rabies using Treenet. The top panel shows the rabies prediction using the climate niche from 2010 [A1B1 
obtained from scenarios network for Alaska + Arctic planning (SNAP)]. The bottom panel depicts the rabies prediction using the climate niche from 
2050 (A1B1 obtained from SNAP)
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from the south could enter the state and how they could 
behave and disperse in a warming Arctic. In addition, the 
adaptation of the arctic rabies virus variants to a chang-
ing environment and host distribution warrants caution 
in overly relying on our prediction of the extent of the 
ecological niche for just this rabies virus variant into the 
future. Our finding that human infrastructure possibly 
plays a central role, and assuming an increase of infra-
structure development, casts doubt on our prediction of 
reduced rabies risk in a changing Alaska.

Despite the limitations mentioned above, the mod-
eling approach and the results presented can still help 
public health officials to better focus preventative efforts 
in the areas most at risk of rabies exposure to humans. 
Such efforts could include traditional measures such as 
possible active surveillance efforts in predicted hotspots 
and coldspots, increased dog vaccinations and popula-
tion controls and vigilance to detect possible outbreaks 
or expansion of enzootic areas in the face of a changing 
Arctic. While currently licensed oral vaccines have been 
shown to be effective in protecting arctic foxes against 
infection with virus circulating in Alaska [51], large-scale 
use of these measures to control rabies are unlikely to be 
cost effective [51]. However, our methods, open access 
compilation and results might guide a more limited use 
of this intervention tool.

Our modeling can especially help target active surveil-
lance efforts in less developed areas of the state. These 
efforts could test the model presented here and greatly 
advance our understanding of relevant drivers of rabies 
maintenance in pristine Arctic areas.

In future work this model and template should be tested 
and applied further with independent data, ideally data 
that is less biased and not dependent on human access 
and human exposure. We also believe that a wider macro-
ecology view and model prediction for rabies overall, and 
its niche is warranted, assuming that other rabies strains 
from Canada or more southern regions will enter Alaska 
sooner or later. This pathogen transport has been seen in 
other disease system with influenza being a prominent 
example of pathogen transport to high latitudes [52]. A 
wider socio-economic perspective to public health and 
rabies across scales is required. Such an approach will 
clarify how the findings of our model can be extended 
beyond the risk of human exposure to start to explain and 
manage the distribution of rabies in Alaskan wildlife.

Conclusions
I this paper we showed that machine learning approaches 
and open data sources can help predict the ecological 
niche of infections disease detection for an important 
zoonotic disease in the Arctic. These findings can help 
guide future surveillance efforts as well as inform public 

health officials in focusing efforts on areas at high risk for 
rabies virus infections. Future work should test our mod-
eled predictions and lead to further refinement of our 
predicted ecological niche of rabies virus in Alaska.
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