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Adoptive cell transfer: new perspective 
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Abstract 

Cancer immunotherapy is recently considered the most promising treatment for human patients with advanced 
tumors and could be effectively combined with conventional therapies such as chemotherapy or radiotherapy. 
Patients with hematological malignancies and melanoma have benefited greatly from immunotherapies such as, 
adoptive cell transfer therapy, experiencing durable remissions and prolonged survival. In the face of increasing 
enthusiasm for immunotherapy, particularly for the administration of tumor-specific T lymphocytes, the question 
arises whether this method could be employed to improve treatment outcomes for canine patients. It is warranted 
to determine whether veterinary clinical trials could support comparative oncology research and thus facilitate the 
development of new cell-based therapies for humans. Herein, we discuss adoptive transfer of T lymphocytes and 
lymphokine-activated cells for application in veterinary oncology, in the context of human medicine achievements. 
Furthermore, we discuss potential benefits of using domestic dog as a model for immunotherapy and its advantages 
for translational medicine. We also focus on an emerging genome-editing technology as a useful tool to improve a T 
cells’ phenotype.
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Background
Cancer is a complex disease caused by the impairment 
in a cells’ physiology leading to uncontrolled prolifera-
tion and inhibition of apoptosis [1]. Disease progression 
results from a complicated interplay between genetic 
alterations of transformed cells and cancer immunoedit-
ing by the hosts immune defense mechanisms [2]. It has 
been indicated in multiple human and canine studies 
that the dysfunction of immune system, enabling tumor 
growth and metastasis, is associated with tumor immune 
escape. This process is mainly manifested by downregu-
lated expression of major histocompatibility complex 
(MHC) class I and tumor specific antigens, as well as, by 
production of anti-inflammatory cytokines such as IL-10 
and TGF-β by malignant cells [3, 4]. Local immunosup-
pression is further supported by active recruitment of 

myeloid-derived suppressor cells (MDSC) into tumor 
microenvironment and activation of suppressive T regu-
latory cells (Tregs). This unfavorable niche alters the fate 
of immune cells and contributes to the functional inhi-
bition of effector T and NK cells (Natural Killer cells), 
resulting in immunologic tolerance [5]. Unresponsive-
ness of T cells is caused by chronic stimulation and 
the expression of co-inhibitory receptors such as Pro-
grammed cell death protein 1 (PD-1) and cytotoxic T 
cell antigen 4 (CTLA-4), which leads to T cell exhaustion 
[6]. Moreover, cancer cells can induce deactivation of 
circulating monocytes and polarization of macrophages 
to M2-like phenotype, which not only foster existing 
tumor but also facilitate spread of transformed cells [7, 
8]. Promotion of cancer progression is also linked with 
production of pro-angiogenic and pro-metastatic factors 
by tumor-associated macrophages (TAMs) and MDSCs 
[8–10]. Given the complex and dynamic crosstalk within 
the tumor microenvironment, the development of an 
effective anticancer immunotherapy has been a challeng-
ing endeavor.
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The first report of ACT therapy date back to mid-
1960’s, when allogeneic T lymphocytes have been trans-
ferred into rats to treat primary fibrosarcoma [11]. The 
goal of the study was to harness cytotoxic CD8+ T cells 
(CTLs), capable of mediating direct target cell lysis, to 
fight against cancer. These landmark experiments paved 
the way for the development of cellular immunotherapy. 
Further advances have resulted in the discovery of can-
cer-associated antigens and the improvement of genetic 
engineering.

Currently, ACT therapy has demonstrated great prom-
ise in eliciting curative responses against hematological 
malignancies and melanoma in human patients. Veteri-
nary oncology is highly translatable for human medicine 
and results obtained in the canine patients can facilitate 
the design of the next-generation clinical trials to treat 
advanced solid tumors in humans.

Search strategy
This review is based on a search in PubMed (http://www.
ncbi.nlm.nih.gov/pubme​d) using the terms “adoptive cell 
transfer” OR “adoptive cell transfer in dogs” AND “tumor 
infiltrating lymphocytes” OR “TILs” AND “TCR engi-
neered T cells” AND “CAR T cells” OR “canine CAR T 
cells” AND “canine T-LAK” AND “genome editing” OR 
“genome editing therapy”. Only papers written in English 
were included in the review. The vast majority of the lit-
erature cited, is less than 15 years old. Exceptions are the 
papers that describe for the first time the crucial method 
or discovered phenomenon in the field of immunother-
apy (i.e. first studies that paved the way for immunother-
apy as a historical link).

All original research related to the canine immuno-
therapy (more specifically canine adoptive cell trans-
fer and T-LAK therapy) were incorporated. Studies 
related to adoptive cell immunotherapy and genome 
editing, were evaluated and the most relevant to the 
review were selected. Our systematic review comprises 
the current knowledge on adoptive cell transfer therapy 
in canine oncology, in the context of human medicine 
achievements.

Advantages of using a dog model for comparative 
oncology
The domestic dog (Canis lupus familiaris) is an attrac-
tive and useful model for comparative medicine for the 
evaluation and development of novel therapeutic strate-
gies and ensuing immunological assessments [12–16]. 
Unlike transplantable xenograft rodent models, canine 
tumors share with human tumors similar epidemiology, 
genetic, biology, treatment responses, prognosis fac-
tors and clinical outcomes. Cancer occurs in dogs natu-
rally and spontaneously and the progression of disease 

(e.g. metastatic cascade) is similar to humans. Finally, 
dogs share the same life environment and thus cancero-
genic and risk factors with people [17]. Similar to people, 
the incidence of cancer in dogs increases with age, with 
a frequency of 45% in animals older than 10  years [18]. 
Therefore, the domestic dog is a recommended model for 
multiple human diseases including cancers such as non-
Hodgkin lymphoma, osteosarcoma, leukemia, melanoma 
and lung, head and neck, prostate, mammary, and blad-
der carcinomas [12, 19, 20].

Cancer research has been revolutionized through the 
advances in genome sequencing and assembly. Knowl-
edge about the genetic basis and molecular mechanisms 
of cancer progression greatly accelerated the develop-
ment of novel therapies. In 2005, the canine genome was 
sequenced, leading to more advanced studies in the field 
of veterinary sciences [21]. It was an important step for 
comparative studies that improved the understanding of 
mammalian evolution as well as enhanced our knowledge 
of tumorigenesis, cancer growth and metastasis, and 
tumor immunology in animals.

The innate and adaptive immune system in dogs is 
comparable to humans. Additionally, the main immune 
cells subsets identified in dogs, as well as their surface 
markers, exhibit similarities to human [16]. Although 
many similarities have been found our understanding of 
canine immune system functioning is still highly affected 
by lack of specific reagent to fully define all immune sub-
sets. Furthermore, factors regulating immune response 
and subsequent signaling pathways responsible for 
induction of anticancer immunity are yet to be deter-
mined. Nevertheless, domestic dog model offer possibili-
ties of clinical studies that will benefit and inform design 
of human clinical trials. Advantages of using canine ani-
mal models are summarized in Fig. 1.

Adoptive T cell transfer therapy
Among the four different categories of immunotherapies 
including: checkpoint inhibitors, monoclonal antibodies, 
therapeutic vaccines and cellular therapies, it is adoptive 
T cells transfer (ACT) therapy that has recently shown 
clinical outcomes of record efficiency in human hemato-
logical malignances and melanoma [22, 23].

ACT treatment involves the infusion of tumor-spe-
cific T lymphocytes into the circulatory system of can-
cer patients. The immune cells can be derived from one 
of two sources: (1) natural host T cells identified in the 
tumor mass—the autologous tumor infiltrating lympho-
cytes (TILs), (2) autologous T cells from patients’ periph-
eral blood that have been genetically engineered ex vivo 
to express specific antitumor T cell receptors (TCRs) 
or chimeric antigen receptors (CARs) [24, 25]. The cells 
obtained from patients are activated and extensively 
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expanded to large numbers (1 × 1011) ex vivo in the pres-
ence of high dose IL-2 (a T cell growth factor) before 
re-infusion. Recently, additional genome editing has 
been proposed to enhance the function of engineered T 
lymphocytes.

In veterinary medicine, due to the similarities between 
canine and human antitumor immunity, a parallel 
approach can be applied (Fig. 2). Herein, we will compare 
ACT therapy in human versus veterinary settings.

Tumor infiltrating T lymphocytes
The tumor microenvironment consists of transformed 
cancer cells and non-transformed stromal and inflam-
matory cells including fibroblasts, endothelial cells, T 
lymphocytes, dendritic cells, MDSCs and macrophages. 
Dynamic crosstalk between all of them via released 
cytokines and growth factors, and direct cell–cell inter-
actions is responsible for either promotion or inhibition 
of tumor growth and metastasis (Fig. 3).

Among the immune cells that penetrate a tumor, the 
tumor infiltrating lymphocytes (TILs), are capable of 
mediating cancer cells eradication. Increased T cell infil-
tration is a good prognostic marker for multiple solid 
tumors including, breast cancer (reviewed: [26, 27]) head 

and neck squamous cell carcinoma [28], melanoma [29, 
30], muscle-invasive bladder cancer [31], seminoma [32], 
pancreatic adenocarcinoma [33], cervical [34], ovarian 
[35], gastric [36] and colorectal [37] tumors.

Most of the TILs in the tumor environment, due to the 
immunoediting process, experience chronic activation 
and exhaustion leading to the attenuation of prolifera-
tion and effector functions via activation of checkpoint 
co-inhibitory receptors such as PD-1 or CTLA-4 [6]. In 
some solid tumors, TILs are present in too low frequency 
to mediate a potent immune response [38]. Thus, TILs 
are retrieving from tumor mass, expanded ex  vivo and 
re-infused back to the cancer patients. Tumor-specificity 
of TILs is selected based on IFN-γ production while co-
cultured with cancer cells. Rosenberg et al. [39] were the 
first to demonstrate the regression of metastatic mela-
noma in patients that received autologous TILs along 
with high doses of IL-2 treatment.

However, after initial success with TIL therapy, fur-
ther investigation revealed that transferred T cells do 
not persist long-term. In fact, infused T cells diminished 
over time and were undetectable in the blood of some 
cancer patients 2  weeks post-transfer, which resulted in 
a lack of objective responses [40]. The cytotoxic T cells 

Fig. 1  The domestic dog can serve as an attractive model in comparative oncology. Dogs and humans share the same environment and possess 
multiple similarities in genetics, physiology as well as tumorigenesis and cancer progression. For this reason, canine models are of great importance 
to cancer and immunological studies and can contribute to improvement of human immunotherapy
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used for transfer were comprised of terminally differenti-
ated effector cells, without self-renewal capacity. Moreo-
ver, for CTLs to induce a potent antitumor response they 
depend on the activity of effector CD4+ T cells and the 
availability of homeostatic cytokines [41–43]. Thus, upon 
transfer into an immunocompetent recipient, CTLs were 
not able to survive and mount an effective response.

Preconditioning of cancer patients significantly 
improves the therapeutic efficiency of TIL therapy. 
This involves the systemic destruction of the recipient 
immune system (lymphodepletion) before ACT-based 
treatment. It was shown that chemotherapy consisting of 
high-dose of cyclophosphamide and fludarabine or total 
body irradiation of non-myeloablative (2 Gy) dose caused 
lymphodepletion, which significantly enhanced ACT effi-
ciency [44, 45]. Such a regimen, prior to infusion, is nec-
essary to destroy host immune cells and create ‘space’ for 
expansion of adoptively transferred T lymphocytes. The 
mechanism relies also on the elimination of immunosup-
pressive Tregs and MDSCs and by augmenting the innate 

immune system. Lymphodepletion excludes immune 
cells termed “cytokine sinks” that compete with infused T 
cells for homeostatic cytokines, thereby increasing access 
to those cytokines, particularly IL-15 and IL-7, which 
promote T lymphocyte proliferation in vivo [46].

Autologous TIL treatment was currently demonstrated 
to induce durable, complete, and in some cases curative 
metastatic melanoma regression with objective tumor 
response observed in around 50% of patients [47, 48]. 
Nevertheless, adaptation of this therapy for other types 
of solid tumor is limited due to low availability of TILs 
from tumor mass [49, 50]. To date, melanoma remains 
most immunogenic type of tumor and even patients 
in advanced stage IV of melanoma can benefit from 
autologous TIL transfer. However, still short-term per-
sistence of infused T cells that are fully differentiated 
and exhausted constitutes an obstacle [51, 52]. Thus, 
extensive studies are ongoing to improve the protocols 
of ex vivo expansion and preparation of TILs (i.e. using 
pharmacological modifications). As of September 2018 

Fig. 2  Tumor microenvironment consists of malignant cells, stroma and different populations of immune cells. Complex crosstalk between them 
shapes the final outcome of neoplastic disease. Anticancer response is driven mainly by cytotoxic CD8+ T cells and NK cells, which release IFN-γ 
and granzymes, thus are involved in direct lysis of the tumor cells. Th1 subpopulation of CD4+ T cells, M1 macrophages and activated dendritic 
cells (DCs) support anticancer immunity by antigen presentation and cytokine production (IL-12, IFN-γ). CD8+ and CD4+ T cells recognize 
tumor antigens in the context of MHC class I and II respectively, followed by costimulatory signaling via CD28 molecule, necessary for their full 
activation, proliferation and function. Tumor progression, in turn, is associated with the presence of the Th2 and T regulatory CD4+ lymphocytes, 
M2 macrophages and MDSC. These cells secrete immunosuppressive factors such as IL-4, IL-10, or TGF-β and exhibit high activity of arginase, 
respectively. Unresponsiveness of cytotoxic CD8+ T cells is caused by decreased expression of MHC I on the cancer cells surface and activation of 
coinhibitory receptors such as PD-1. Adapted from Servier Medical Art



Page 5 of 13Bujak et al. Acta Vet Scand  (2018) 60:60 

there are 158 open clinical studies regarding administra-
tion of TILs to human cancer patients (http://www.clini​
caltr​ials.gov). Advantages and disadvantages of using 
TILs are summarized in Table 1.

TILs in veterinary oncology
Tumor infiltrating lymphocytes in canine cancers are 
not well characterized, therefore there is still much to 
be gleaned. An increase in T lymphocyte infiltration was 
correlated with spontaneous, rapid regression of trans-
missible venereal sarcoma [53], oral papilloma [54] and 
cutaneous histiocytoma [55].

Lymphocyte infiltration has been studied in canine 
mammary gland tumors as it is an attractive biologi-
cal model for the investigation of human breast cancer 
immunology [56]. Initial studies showed an increase in 
infiltrating T cells in the tumors that gave metastasis, 
suggesting that TILs, especially CD4+ T cells promote 
tumor expansion [57, 58]. In contrast, the lab of Carvalho 
[59] demonstrated that malignant mammary tumors had 
a reduced number of intratumoral T cells compared to 
benign tumors. However, the proportion was reversed 
when CD3+ T cells were counted in the peripheral parts 

of the tumor or in the adjacent non-malignant mammary 
gland, indicating that T cells from that region might be 
engaged in tumor progression. In addition, an increase 
of TILs was associated with increased canine mammary 
tumor malignancy [60]. Unfortunately, the published 
data lacks in-depth T cell subset analysis, specifically 
the identification of Tregs, which are known to exhibit 
immunosuppressive properties thereby supporting can-
cer development [60].

Recent data confirms that a high frequency of T cells 
found within malignant tumors is due to a high percent-
age of Tregs [61]. Similarly, Mucha et al. [62] demonstrate 
an increased population of FoxP3+ (regulatory T cell-
associated transcription factor) cells in canine malignant 
and metastatic mammary cancers compared to benign 
tumors. Likewise, Tominaga et al. [63] found, high Treg 
frequency in the peripheral blood and even higher in the 
tumor mass of dogs with oral melanoma.

Although, no studies have utilized TILs for ACT ther-
apy in dogs with solid tumor, there is ongoing research 
which exploits T cells from canine patients with lym-
phoma [64]. In this case, however, the use of the term 
“TILs” can be speculative since in the hematological 

Fig. 3  Adoptive cell immunotherapy possibilities for cancer in dogs include transfer of TILs, TRC-modified and CAR-engineered T lymphocytes. 
Tumor reactive T cells can be derived from tumor mass or peripheral blood lymphocytes can be genetically engineered to recognize tumor-specific 
antigens. Obtained T cells are expanded ex vivo and then administrated back to the tumor-bearing patient. Recently, genome editing technologies 
are using to confer additional modifications to T cells such as disruption of endogenous TCR and MHC. Introduction of ACT treatment into 
veterinary medicine can greatly facilitate the design of the new clinical trials for humans. Adapted from Servier Medical Art

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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malignancies T cells do not truly infiltrate the tumor. 
T cells used in the following study were memory T cells 
which exhibit anticancer activity. These studies revealed 
that the transfer of autologous T lymphocytes from 
dogs with non-Hodgkin lymphoma, previously treated 
with chemotherapy, improved clinical outcomes. T cells 
isolated from the blood of lymphoma-bearing dogs 
were co-cultured with γ-irradiated K562 cells geneti-
cally modified to function as artificial antigen present-
ing cells (aAPC), in the presence of rhIL-21 and rhIL-2. 
Recently, this approach was also used to expand canine 
CAR T cells [65]. For the purpose of ACT, the major-
ity of the cells were CD3+/CD8+ (88%). Importantly, 
70% of the cells were memory T cells (CD3+, CCR7+) 

characterized by high production of IFN-γ. Dogs 
treated with chemotherapy and ACT therapy achieved 
complete remission lasting at least 338 days post T cell 
transfer. Overall percentage of CD8+ T cells was higher 
in the blood for up to 42  days of canine patients that 
received ACT therapy compared to their non-treated 
counterparts. The increase of CD8+ T cells was cor-
related with increased expression of thymidine kinase, 
enhanced granzyme B production and decreased neu-
trophil to lymphocyte ratio. The study demonstrated 
the successful application and clinical outcomes of 
tumor immunotherapy for canine patients. Of note, this 
was the first study to show the power of this effective 
therapy in in vivo study providing a solid foundation for 
further studies in the field of veterinary oncology.

Table 1  The major advantages and disadvantages of various methods of generating T cells for the purpose of adoptive 
transfer

Therapy type Advantages Disadvantages

Tumor-infiltrating lymphocytes (TILs) Recognize tumor-specific antigens Isolation difficulties—not applicable for all of the 
cancer types

High objective response against cancer reaching 
even up to 70%

Labor and time consuming

Sustained remission Not applicable for larger group of patients

Low recurrence rate Not all of the TILs are reactive to tumor antigens

Presence of tumor-reactive T cells is indispensable

TCR-engineered lymphocytes Does not require presence of tumor antigen-
specific T cells

Competition between transgenic TCR and endog-
enous TCR​

Lymphocytes can be obtained from blood not 
from tumor tissue

Heterodimer formation and possibility of gaining 
unknown antigen-specificity

Expression of two distinct TCR was associated 
with autoimmunity

Chimeric antigen receptor (CAR)—engineered T 
lymphocytes

Specific for broad-range of antigens including 
non-proteinaceous Ag

Fusion of various signaling domains may alter 
proper signaling cascade

MHC-independent antigen recognition CAR expression may not be stable

Suitable for a relatively wide range of patients—
not HLA-restricted

Uncertainties regarding the type of signaling 
domains and their order for proper T cell func-
tion

Production of large quantities in relatively short 
time

Antigen specificity must be selected with caution

Putative improvement of T cell properties such 
as proliferation, activation or cytokine secre-
tion by insertion of specially designed CAR​

May cause toxicity (on target/off tumor effect)

CAR biology and interaction with different cancer 
types and TME not well defined yet

Identification of optimal CAR still based on experi-
mental procedures

Genome editing technologies (ZFN, TALENS, 
CRISPR/Cas)

Enhancement of T cells biology (e.g. resistance 
to TMI, cytokine secretion)

Possible off-target effect

Applicable for wide-range of dysfunctions Technical problems with delivery and efficiency

Allow to overcome limitations of TCR-engi-
neered and CAR T cells (elimination of endog-
enous TCR expression)

May induce immune response against bacterial 
components of GE technology

Applicable for greater number of patients Controversial, ethical issues
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Utilizing T cell receptor transduction for ACT 
therapy
Antitumor activity of T cells is based on the ability of 
a T cells to recognize antigen via its endogenous T cell 
receptor (TCR). TCR is a transmembrane protein com-
plex, consisting of α- and β-chains (more rarely δ- and 
γ-chains). Although, it was demonstrated that tumor-
specific T cells can be successfully isolated from both 
tumor microenvironment and the blood for the purpose 
of ACT [66, 67], the limitations of this approach still hin-
der its wide application in medicine. The major drawback 
is related to accessibility of TILs in certain tumor types 
[50]. To overcome this limitation, the use of TCR-engi-
neered T cells has been extensively studied.

The first studies, performed with mouse models, dem-
onstrated that transfer of TCR α and β genes, targeted 
to tumor antigens, into T cells confers tumor antigen-
specificity [68, 69]. These pioneering studies led to sig-
nificant progress in the field of TCR-engineering for T 
cell therapy. To date, TCR-engineered T cells have been 
used against renal cell carcinoma antigen (RCC) [70], 
Wilms tumor antigen-1 (WT1) for leukemia cells [71], 
melanoma antigen recognized by T cells 1 (MART1) for 
patients suffering from melanoma [72] or cancer–testis 
antigen (NY-ESO-1) to treat myeloma [73]. Each of the 
studies showed the benefit with objective responses and 
potent antitumor activity.

The advantage of TCR-engineered T cells is that lym-
phocytes can be easily obtained from the peripheral 
blood and then transformed into tumor-reactive cells. 
Nevertheless, the major limitation of this method arises 
from off-target TCR heterodimer formation (Table  1). 
With the addition of a second α and β TCR chain, it is 
probable for the expression of four different TCR recep-
tors due to interactions of endogenous and introduced α 
and β TCR chains [74]. Studies by Sommermeyer labo-
ratory [75] have indicated that TCR with strong anti-
gen affinity may replace TCR with weak antigen affinity, 
resulting in T cells with altered or novel antigen specific-
ity. Furthermore, simultaneous expression of two distinct 
TCR was associated with an induction of autoimmunity 
[76–78].

Numerous clinical trials reveal potential toxicity of 
TCR-redirected T cell therapy, arising from on-target 
but off-tumor effects that in extreme cases lead to lethal 
outcomes [79]. For this reason, the crucial step in devel-
opment of effective and safe treatment is selection of 
tumor-specific TCR.

TCR-engineered T cells have not been used in vet-
erinary oncology primarily due to the fact that anti-
gen recognition is based on MHC-restricted epitopes. 
Recently, however, Barth et al. [80] successfully identified 
a binding motif of canine MHC I allele DLA-88*50101. 

Interestingly, this binding motif exhibited high similarity 
to human leukocyte antigen HLA-A*02:01. Therefore, the 
authors stressed that canine models would be suitable for 
testing TCR-transduced T cell-based immunotherapies. 
Importantly, the canine genome has been sequenced 
which will help in the development of novel targets 
that can be implemented in both human and veterinary 
medicine.

Chimeric antigen receptor (CAR) engineered T cells
The main restriction in using TCR-engineered T cells 
results from heterodimer formation resulting in unde-
fined antigen specificity. Importantly, T cells can rec-
ognize antigen via its TCR only when it is processed 
into a peptide and presented in the context of an MHC 
molecule. However, malignant cells often downregulate 
expression of MHC molecules in order to avoid immune 
response [81]. Due to these limitations, researchers have 
developed a novel solution. The chimeric antigen recep-
tor (CAR) fuses a single chain variable fragment (scFv) 
of an antibody that recognizes antigen with the intracel-
lular signaling domains of the CD3ζ. The initial studies, 
conducted by Gross et  al. [82], proved that T cells can 
successfully express chimeric receptors that recognize 
specific antigens and trigger T cell response. To date, 
three generations of CARs can be distinguished, based on 
the signaling endodomains [83]. First generation CARs 
consist solely of an antigen binding domain and the 
CD3ζ signaling domain necessary for T cell activation, 
while the 2nd generation incorporated a co-stimulatory 
signaling such as CD28 or inducible T cell costimulator 
(ICOS) [84]. Third generation of CARs combine addi-
tional co-stimulatory molecules to enhance the potency 
[85]. It was demonstrated that each generation of CARs 
exhibited distinctive properties with regard to the T cells’ 
antitumor activity, proliferation, cytotoxic properties, 
and persistence [86]. Studies by Hombach and Abken 
[87] have revealed significant differences, mainly related 
to proliferation and cytokine secretion, between lym-
phocytes expressing CARs recognizing the same epitope 
but with various costimulatory endodomains. Also, 
Bridgeman et al. [88] pointed out that results may differ 
significantly from each other even if the same chimeric 
receptors were used. Consequently, the design of artifi-
cial chimeric receptors requires further refinements and 
definition of the most optimal CAR structure.

There is great potential for adoptive therapy with CAR-
engineered T cells as a treatment for some types of the 
cancer such as neuroblastoma and leukemia [89, 90], yet 
in other cancer types (e.g. ovarian cancer and metastatic 
renal cell carcinoma) the therapy have demonstrated 
poor responses [91, 92]. Additionally, these studies have 
documented on-target/off-tumor toxicities after CAR-T 
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cell treatments. Nonetheless, it was proposed that on-tar-
get toxic effects of CAR-T cell therapy can be abolished 
by administration of agents that block specific epitopes, 
such as monoclonal antibodies [93].

Many aspects of CAR-T cell therapy require further 
investigation however, the therapy induce a power-
ful antitumor response. The latest trends in CAR-T cell 
research are designing the next-generation CAR-T cells 
that will be engineered with suicide genes or dual-antigen 
receptors. It is believed that it will be easier to control the 
function of the next generation CAR-T cells and thereby 
minimizing their side effects [94].

CAR‑T cells in veterinary oncology
ACT therapy in dogs is not as advanced as in humans and 
therefore the literature on the subject is still limited. To 
date, just two groups have attempted to use CAR tech-
nology to treat canine osteosarcoma (OS) and B cell lym-
phoma. These tumors are considered as valuable model 
of human cancers as they share similar tumor-associated 
antigens such as HER2 (osteosarcoma associated antigen) 
and CD20 (marker of transformed B cells).

The ACT study to treat osteosarcoma was performed 
with T cells obtained from peripheral blood of healthy 
dogs [65]. The T lymphocytes were activated using irradi-
ated K562 aAPCs, genetically modified to express human 
CD80, CD83, CD86, 41BBL. Additionally, cells were 
stimulated with phytohemagglutinin (PHA) and rhIL-
21. Interestingly, other methods of activation, such as 
administration of Concanavalin A (ConA) or anti-human 
CD3 (OKT-3 clone) antibodies coated-plates were insuf-
ficient to effectively stimulate canine T cell proliferation 
for ACT therapy purpose [65, 95]. Activated T cells were 
subsequently transfected with a 2nd generation α-canine 
HER2 CAR (containing CD3ζ and CD28 domains). The 
authors demonstrated that HER2-CAR-T cells in co-
culture with several HER2 positive canine OS cell lines 
secreted more IFN-γ and exhibited superior ability to 
eliminate HER2+ OS cells in vitro. The results were not 
observed in HER2− OS-phenotype cell lines or non-
transfected T cells. Despite these promising results, this 
approach has not yet been evaluated in vivo.

Building on these encouraging in vitro data, Panjwani 
et  al. [95] performed in  vivo studies on dogs suffering 
from B cell lymphoma. Autologous canine T cells were 
transiently transfected with α-canine CD20 CAR using 
electroporation. In the presence of canine lymphoma 
cells the CD20-CAR-T cells secreted significantly more 
of IFN-γ, than non-modified T cells or CD19-CAR-T 
cells (used as non-specific CAR transfection control). 
Additionally, antigen-specific CAR-T cells actively lysed 
the target cancer cells. Dogs with B cell lymphoma that 

relapsed after chemotherapy (l-asparaginase, vincris-
tine, cyclophosphamide, doxorubicin or prednisone) 
were given three doses of 700,000 CD20-CAR-T cells 
per kg. Serious adverse side effects were not observed. 
Each injection resulted in an enlargement of the target 
lymph node, decreased frequency of cancer CD79a+/
CD20+ cells and increase of non-transformed CD5+ B 
lymphocytes in the lymph nodes. In addition, increased 
serum levels of IL-6 and IFN-γ were measured after the 
first dose of CD20-CAR-T cells [95]. Unfortunately, due 
to the transient transfection of these CAR-T cells, dura-
ble remission was not attained.

Lymphokine‑activated killer (LAK) cells 
for adoptive cell therapy
In contrast to adoptive T cell transfer therapy which 
exploits tumor-specific T cells, passive immunotherapy 
involves administration of autologous lymphocytes, 
without cancer specificity. In human medicine, this 
type of immunotherapy is referred to as lymphokine-
activated killer (LAK) cell therapy and was among one 
of the first cell transfers [96] discarded in a favor of 
newer technologies (ACT therapy using TCR- or CAR-
engineered T cells). However, LAK cells transfer was 
preferentially investigated in veterinary medicine, due 
to the low cost of cell generation. LAK cells are derived 
from PBMC stimulated with α-CD3 antibody-coated 
plates and soluble hrIL-2. Initially, LAK cell therapy 
was tested in healthy beagles [97]. Sequential adminis-
tration of LAK cells increased host immune cell prolif-
eration and IFN-γ levels in the serum without inducing 
severe side effects. These results suggested that LAK 
cell therapy is safe and could promote an immune 
response. Several papers described LAK cells’ gen-
eration and anticancer activity against canine thyroid 
carcinoma and melanoma cell lines in  vitro [97–99]. 
Recently, LAK cell therapy, in combination with sur-
gery, was evaluated in  vivo in 15 tumor-bearing dogs 
[100]. Patients received five rounds of LAK cell trans-
fer with 2–4 weeks intervals. Single transfer resulted in 
an increase of CD8+ T cells’ frequency and a decreased 
ratio of CD4+ to CD8+ T cells. Although the immu-
noenhancing effect of LAK cell transfer was confirmed, 
this type of immunotherapy alone has not mediated 
potent anticancer immune response or complete tumor 
eradication. Therefore, LAK cell transfer is not suitable 
as a monotherapy, but its application is promising as an 
adjuvant treatment.

A summary of different immunotherapeutic 
approaches in veterinary medicine have been compiled 
in Table 2.
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Exploiting genome‑editing technology to improve 
T cell phenotype
Genetic engineering technology is used for modify-
ing of both TCR- and CAR-engineered T cells. Novel 
approaches focused on modulation of chemokine recep-
tor expression and cytokine secretion of T lymphocytes 
or resistance to immunosuppressive tumor microenvi-
ronment by effector cells.

To date, three methods of genome editing have been 
implemented in the clinic: (1) zinc finger nucleases 
(ZFN), (2) transcription activator-like effector nucle-
ase (TALEN) and the most recent (3) clustered regu-
larly interspaced short palindromic repeats (CRISPR) 
associated protein system (CRISPR/Cas9) (Fig.  4) [101]. 
ZFN and TALEN are chimeric nucleases that contain a 
DNA-binding domain (engineered to recognize spe-
cific sequences) and a DNA cleavage enzyme (usually 
FokI) [102–104]. CRISPR/Cas9 system is based on RNA-
guided DNA sequence recognition followed by cleav-
age by Cas9 endonuclease [105]. Each of these methods 
introduces nuclease-induced DNA double strand breaks 
into the sequence of interest. Importantly, these tech-
nologies not only improve gene silencing, but also allows 
for other genetic manipulations such as gene correction, 
deletion or insertion (Fig. 4) [106]. Thus, they appear to 
be a promising and useful tool for biomedical research.

The first in vivo success of this technology was achieved 
using ZFN to treat haemophilia in a murine model-
correcting this genetic disorder and restorating normal 
blood coagulation [107]. Genome-editing technologies 
were also employed for treating of hereditary tyrosinemia 

Table 2  Adoptive cell transfer immunotherapies in veterinary 
medicine

Therapy type Attempts to use in veterinary oncology

TIL therapy Non-Hodkgin’s lymphoma In vivo [64]

CAR-T cell transfer Osteosarcoma In vitro [65]

B-cell lymphoma In vitro and in vivo [95]

T-LAK cell transfer Thyroid cancer In vitro and in vivo [98, 
100]

Melanoma In vitro and in vivo [98, 
100]

Hepatocarcinoma In vivo [100]

Fibrosarcoma In vivo [100]

Fig. 4  Genome editing systems are used to introduce double-strand breaks into DNA, which allow for gene correction, deletion or addition 
ZFNs, TALENs and CRISPR/Cas9 are versatile nuclease-based platforms of genome editing technology. ZFNs and TALENs consist of DNA-binding 
domain, which is engineered to recognize specific sequences and nuclease domain—FokI—responsible for DNA cleavage. CRISPR/Cas9 is based on 
RNA-guided DNA recognition complex which interacts with Cas9 nuclease catalyzing site-specific breaks in DNA. Genome editing technologies can 
be used for the immunotherapy purposes to enhance T cells properties
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(HTI), Duchenne muscular dystrophy (DMD) and hepa-
titis B virus (HBV) infection [108–110].

Recently, T cells modified using TALEN-based technol-
ogy were transferred to leukemia patients [111]. Alloge-
neic healthy donor T cells were genetically engineered to 
prevent graft-versus-host disease (GVHD) upon adoptive 
cell transfer. Infused T cells did not cause an immune 
response in the recipient. This technique has been used 
just to prolong a patients’ survival time until suitable 
donor is found. In followup studies, CD19 CAR-T cells 
with disrupted TCR and CD52 coding genes were used 
to effectively treat B cell malignancies in infant [112]. 
Authors speculated that due to the lack of TCR expres-
sion, heterologous CAR-T cells can potentially be utilized 
for every patient with B cell leukemia [112, 113]. These 
study confirmed that gene editing technology may help 
to solve problems associated with engineering T cells. 
Similarly, ZFN-mediated disruption of the endogenous 
TCR genes in WT1 antigen-specific T cells prevented 
GVHD upon transfer into mice. This procedure pre-
vents TCR heterodimmer formation, which is one of 
the major drawbacks of TCR-engineered T cell transfer 
therapy [114]. Recent advances in genetic manipulations 
can allowed to reduce adverse effects of ACT therapy 
and make it more widely applicable for the treatment for 
a range of malignancies. However, there are still several 
limitations of using genome editing technologies, which 
comprise: low efficiency of the method in some cell types, 
construct delivery problems, single-instead of double-
stranded breaks, and off-target effects of nucleases and 
genetically modified cells (Table 1) [106, 115].

Genome editing has not been fully exploited in canine 
patients. Nevertheless, CRISPR/Cas9 method has been 
used to generate beagles with a myostatin gene knockout 
[116]. The study proved the feasibility of canine genome 
editing technique and has paved the way to generate 
other knockout dogs, potentially serving as models of 
multiple disease in the biomedical sciences.

Conclusion
In the past few years, we have witnessed amazing suc-
cesses in harnessing immune system to fight against can-
cer. The American Society of Clinical Oncology selected 
cancer immunotherapy as the 2016 “Advance of the Year” 
for its unprecedented effectiveness in eradicating vari-
ous types of tumors. In the future, more efforts should be 
made to utilize translational veterinary medicine to bene-
fit human health. The domestic dog model offer multiple 
advantages to move cancer immunotherapies forward. 
Most importantly, these treatments may be also the sil-
ver lining in veterinary oncology giving hope for canine 
patients.
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