Skip to main content
  • Published:

Effect of Hypophosphatemia on Muscle Metabolism after Exercise in Pigs

Effekt av hypofosfatemi på muskelmetabolism efter arbete hos gris.

Abstract

Five Swedish Land-race pigs with a mean weight of 51±5 kg performed an exercise test on a treadmill at a speed of 1.8 m/s and a duration of 10 min. Hypophosphatemia was then induced in these pigs by addition of aluminium hydroxide (liquid antacid) to the normal feed. After 3 weeks, the exercise test was repeated when the mean weight of the pigs was 65±9 kg. Five other Swedish Landrace pigs with a mean weight of 72±4 kg performed a similar exercise test. Muscle biopsies from M. biceps and blood samples were taken from all pigs 3–5 days before and immediately after each exercise test. Hypophosphatemic pigs had significantly lower serum phosphate and higher aluminium levels than normophosphatemic pigs. In all pigs, glycogen content in muscle decreased significantly (-108 to -135 mmol/kg muscle) with exercise while no changes were seen in adenosine triphosphate, creatine phosphate or inorganic phosphate concentrations. In normophosphatemic pigs, glucose-6-phosphate and lactate concentrations increased significantly during exercise by 2–4 mmol/kg and 12.8–14.4 mmol/kg, respectively. However, in hypophosphatemic pigs, glucose-6-phosphate concentrations decreased significantly during exercise by 4.4 mmol/kg and lactate levels were unchanged. These results indicate that low serum inorganic phosphate levels influence muscle metabolism and glycolysis in connection with physical exercise.

Sammanfattning

Fem grisar, med en medelvikt på 51 ± 5 kg utförde ett arbetsprov på en rullande matta (1,8 m/sec) under 10 min. Hypofosfatemi inducerades därefter med tillägg av aluminiumhydroxid (flytande antacida) till ett normalt foder. Efter 3 veckor då grisarnas medelvikt var 65 ± 9 kg upprepades arbetsprovet. Fem andrå grisar med en medelvikt på 72 ± 4 kg utförde samma arbetsprov.

Muskelbiopsier (M. biceps) och blodprov togs från alla grisar 3-5 dagar före och omedelb art efter arbetsprovet. Hypofosfatemigrisarna hade signifikant lägre koncentrationer av serumfosfat och högre koncentrationer av serumaluminium än normofosfatemigrisarna. Hos alla grisar minskade glykogenhalten signifikant i muskeln (108-135 mmol/kg) med arbete medan koncentrationerna av adenosin trifosfat, kreatin fosfat och oorganiskt fosfat var oförändrade. I muskeln hos normofosfatemiska grisar ökade koncentrationerna av glukos-6-fosfat med 2-4 mmol/kg och laktat med 12,8-14,4 mmol/kg i samband med arbete. Däremot uppstod en signifikant sänkning av glukos-6-fosfat (4,4 mmol/kg) i muskel från hypofosfatemiska grisar och laktatkoncentrationen var oförändrad. Resultaten indikerar att lågt serumfosfat har inverkan på muskelmetabolism och glykolys i samband med fysiskt arbete.

References

  • Boelens PA, Norwood W, Kjellstrand C, Brown DM: Hypophosphatemia with muscle weakness due to antacids and hemodialysis. Amer. J. Dis. Child. 1970, 120, 350–353.

    CAS  PubMed  Google Scholar 

  • Bohannon NJV: Large phosphate shifts with treatment for hyperglycemia. Arch. intern. Med. 1989, 149, 1423–1425.

    Article  CAS  Google Scholar 

  • Brautbar N, Baczynski R, Carpenter C, Moser S, Geiger P, Finander P, Massry SG: Impaired energy metabolism in rat myocardium during phosphate depletion. Amer. J. Physiol. 1982, 242, F699–F704.

  • Brautbar N, Carpenter C, Baczynski R, Kohan R, Massry SG: Impaired ener gy metabolism in skeletal muscle during phosphate depletion. Kidney Internat. 1983a, 24, 53–57.

  • Brautbar N, Leibovici H, Massry SG: On the mechanism of hypophosphatemia during acute hyperventilation. Evidence for increased muscle glyco lysis. Mineral Electrol. Metab. 1983b, 9, 45–50.

  • Brautbar N, Massry SG: The myopathy of phosphate depletion. Advanc. exp.med. Biol. 1984, 178, 363–375.

    Article  CAS  Google Scholar 

  • Darsee JR, Nutter DO: Reversible severe congestive cardiomyopathy in three cases of hypophosphatemia. Ann. Intern. Med. 1978, 89, 867–870.

    Article  CAS  Google Scholar 

  • Davis SV, Olichwier KK, Chakko SC: Reversible depression of myocardial performance in hypophosphatemia. Amer. J. med. Sci. 1988, 295, 183–187.

    Article  CAS  Google Scholar 

  • Davis JL, Lewis SB, Schultz TA, Kaplan RA, Wallin JD: Acute and chronic phosphate depletion as a modulator of glucose uptake in rat skeletal muscle. Life Sci. 1979, 24, 629–632.

    Article  CAS  Google Scholar 

  • DeFronzo RA, Lang R: Hypophosphatemia and glucose intolerance: Evidence for tissue insensitivity to insulin. New Eng. J. Med. 1980, 303, 1259–1263.

    Article  CAS  Google Scholar 

  • Essén B, Kaijser L: Regulation of glycolysis in intermittent exercise in man. J. Physiol. 1978, 281, 499–511.

    Article  Google Scholar 

  • Frech W, Cedergren A, Cederberg C, Vessman J: Evaluation of some critical factors affecting determination of aluminum in blood, plasma or serum by electrothermal atomic absorption spectroscopy. Clin. Chem. 1982, 28, 2259–2263.

    Article  CAS  Google Scholar 

  • Fuller TJ, Carter NW, Barencas C, Knochel GP: Reversible changes of the muscle cell in experimental phosphorous deficiency. J. clin. Invest. 1976, 57, 1019–1024.

    Article  CAS  Google Scholar 

  • Fuller TJ, Nichols WW, Brenner BJ, Peterson JC: Reversible depression in myocardial performance in dogs with experimental phosphorus deficiency. J. clin. Invest. 1978, 62, 1194–1200.

    Article  CAS  Google Scholar 

  • Gravelyn TR, Brophy N, Siegert C, Peters-Golden M: Hypophosphatemia associated respiratory muscle weakness in a general inpatient population. Amer. J. Med. 1988, 84, 870–876.

    Article  CAS  Google Scholar 

  • Harrison WH, Codd E, Gray RM: Aluminium inhibition of hexokinase. The Lancet 1972, 2, 277.

  • Hettleman BD, Sabina RL, Drezner MK, Holmes EW, Swain JL: Defective adenosine triphosphate synthesis. J. clin. Invest. 1983, 72, 582–589.

    Article  CAS  Google Scholar 

  • Håglin L, Essén-Gustavsson B, Kallner A, Reiland S, Sjöberg HE: Hypophosphatemia induced by dietary aluminium hydroxide supplementation in pigs: Effects on growth, blood variables, organ weights and renal morphology. Acta vet. scand. 1988, 29, 91–99.

    PubMed  Google Scholar 

  • Kallner A: Determination of phosphate in serum and urine by a single step malachite-green method. Clin. chim. Acta 1975, 59, 35–39.

    Article  CAS  Google Scholar 

  • Knochel JP, Barcenas C, Cotton JR, Fuller TJ, Haller R, Carter NW: Hypophosphatemia and rhabdomyolysis. J. clin. Invest. 1978, 62, 1240–1246.

    Article  CAS  Google Scholar 

  • Lai JCK, Blass JP: Inhibition of brain glycolysis by aluminium. J. Neurochem. 1984, 42, 438–446.

    Article  CAS  Google Scholar 

  • Lotz M, Zisman E, Bartter FC: Evidence for a phosphorus-depletion syndrome in man. New Eng. J.Med. 1968, 278, 409–415.

    Article  CAS  Google Scholar 

  • Lowry OH, Passonneau JV: A Flexible System for Enzymatic Analysis. Academic Press, New York 1973.

  • O’Connor LR, Wheeler WS, Bethune JE: Effect of hypophosphatemia on myocardial performance in man. New Eng. J. Med. 1977, 297, 901–903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håglin, L., Essén-Gustavsson, B. Effect of Hypophosphatemia on Muscle Metabolism after Exercise in Pigs. Acta Vet Scand 33, 139–145 (1992). https://doi.org/10.1186/BF03547320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03547320

Keywords