Skip to main content
  • Published:

Hypophosphatemia Induced by Dietary Aluminium Hydroxide Supplementation in Pigs: Effects on growth, blood variables, organ weights and renal morphology

Hypofosfatemi hos gris genom tillägg av aluminium-hydroxid: effekter på tillväxt, blodvariabler, organvikter och njurmorfologi

Abstract

Twenty-four pigs, 13-14 weeks of age, were studied during an experimental period of 10 weeks. The pigs were randomly divided into 3 groups. Two groups were fed a commercial feed supplemented either with a suspension of aluminium hydroxide (Al(OH)3) or aluminium phosphate (A1PO4). The third group served as a control. The same total amount of aluminium was given to each of the 2 experimental groups. After three weeks the Al(OH)3-pigs developed severe hypophosphatemia, with an average decrease in serum phosphate of 60%, a decreased growth rate and a lower concentration of 2,3-diphosphoglycerate in the erythrocytes as compared to controls. Intense hypercalcemia developed in the Al(OH)3-group during the first 6 weeks, whereas the AlPO4-pigs and the control group developed neither hypophosphatemia nor hypercalcemia. At necropsy, the consequence of the long lasting hypophosphatemia was found to be increased relative kidney weights with morphological signs of tubular damage and dyscalcification. No similar changes were observed in the AlPO4-groups and there were no organ weight deviations compared to the control group.

Sammanfattning

Tjugofyra grisar, 13–14 veckor gamla, studerades under en tio veckor lång experimentperiod. Grisarna delades slumpvis in i tre grupper. Två grupper utfodrades med ett kommersiellt foder, tillsatt lösning av, antingen aluminium-hydroxid (Al(OH)3 eller aluminium-fosfat (AlPO4). En tredje grupp utgjorde kontroller. Ungefär samma totala mängd aluminium tillfördes vardera experimentgruppen. Efter tre veckor utvecklade de Al(OH)3 behandlade grisarna hypofosfatemi, och en genomsnittlig sänkning av serumfosfat med 60% minskad tillväxthastighet och lägre koncentration av 2.3-difosfoglycerat i röda blodkroppar än kontrollerna. Hyperkalcemi utvecklades i Al(OH)3-gruppen under de första sex veckorna, medan AlPO4-grisar och kontroller inte fick vare sig hypofosfatemi eller hyperkalcemi. Vid obduktionen fann man ökad relativ njurvikt och morfologiska tecken på tubulär skada med förkalkning. Några likartade förändringar kunde inte observeras i AlPO4-gruppen och det fanns inte några avvikelser i organvikter jämfört med kontrollgruppen.

References

  • Armitage P: Statistical Methods in Medical Research 3rd ed. Blackwell Scientific Publications, Oxford 1974.

    Google Scholar 

  • Aubel C E, Hughes J S, Lienhardt HF: The effects of low-phosphorus rations on growing pigs. J. Agr. Res. 1936, 52, 149–159.

    CAS  Google Scholar 

  • Bar A, Wasserman R H: Control of calcium absorption and intestinal calcium-binding protein synthesis. Biochem. Biophys. Res. Comm. 1973, 54, (1), 191–196.

    Article  CAS  Google Scholar 

  • Brautbar N, Lee DNB, Coburn J W, Kleeman CR: Normophosphatemic phosphate depletion in growing rat. Amer. J. Physiol. 1979, 236, E283–288.

    CAS  PubMed  Google Scholar 

  • Coburn J W, Massry S G: Changes in serum and urinary calcium during phosphate depletion: Studies on mechanisms. J. clin. Invest. 1970, 49, 1073–1087.

    Article  CAS  Google Scholar 

  • Davis JL, Lewis S B, Schultz TA, Kaplan R A, Wallin J D: Acute and chronic phosphate depletion as a modulator of glucose uptake in rat skeletal muscle. Life Sciences 1979, 24, 629–632.

    Article  CAS  Google Scholar 

  • Day H G, McCollum E V: Mineral metabolism, growth, and symptomatology of rats on a diet extremely deficient in phosphorus. J. Biol. Chem. 1939, 130, 269–283.

    Article  CAS  Google Scholar 

  • Dominguez J H, Gray R W, Lemann J: Dietary phosphate deprivation in women and men. Effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-Vitamin D. J. Clin. End. Metab. 1976, 43, 1056–1068.

    Article  CAS  Google Scholar 

  • Dousa TP, Kempton SA: Regulation of renal brush border membrane transport of phosphate. Mineral Electrolyte Metab. 1982, 7, 113–121.

    CAS  Google Scholar 

  • Emmett M, Seldin D W: Disturbances in acid-base balance during hypophosphatemia and phosphate depletion. Adv. exp. Med. Biol. 1978, 103, 313–325.

    Article  CAS  Google Scholar 

  • Ericson A, De Verdier C H: A modified method for the determination of 2.3-diphosphoglycerate in erythrocytes. Scand. J. clin. Lab. Invest. 1972, 29, 85–90.

    Article  CAS  Google Scholar 

  • Filer L J, Churella H, Knauff R, Vaughan O W: Effects of dietary calcium, phosphorus, and strontium on growth, organ weights and bone composition of miniature swine. In: Swine in biomedical research. Eds. Bustad L. K. McClellan & M. P. Burns. Battelle Memorial Institute Pacific Northwest Laboratory Richland, Washington 1966, p. 151–162.

    Google Scholar 

  • Fitzgerald F: Clinical hypophosphatemia. Ann. Rev. Med. 1978, 29, 177–189.

    Article  CAS  Google Scholar 

  • Freeman S, McLean F C: Experimental rickets. Blood and tissue changes in puppies receiving a diet very low in phosphorus, with and without vitamin D. Arch. Pathol. 1941, 32, 387–408.

    CAS  Google Scholar 

  • Fuller TJ, Nichols W W, Brenner B J, Peterson J C: Reversible depression in myocardial performance in dogs with experimental phosphorus efficiency. J. clin. Invest. 1978, 62, 1194–1200.

    Article  CAS  Google Scholar 

  • Goldenberg H, Fernandez A: Simplified method for the estimation of inorganic phosphorus in body-fluids. Clin. Chem. 1966, 12, 871–882.

    Article  CAS  Google Scholar 

  • Jacob H S: Severe hypophosphatemia. A previously ignored cause of cellular dysfunction. West. J. Med. 1975, 122, 501–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knochel J P: Hypophosphatemia. West. J. Med. 1981, 134, 15–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knöchel J P: Models of hypophosphatemia and phosphate depletion. Adv. exp. Med. Biol. 1982, 151, 191–198.

    Article  Google Scholar 

  • Knöchel J P, Barcenas C, Cotton J R, Fuller T J, Haller R, Carter N W: Hypophosphatemia and Rhabdomyolysis. J. clin. Invest. 1978, 62, 1240–1246.

    Article  Google Scholar 

  • Koch ME, Mahan D C: Biological characteristics for assessing low phosphorus intake in growing swine. J. Anim. Sci. 1985, 60, 699–708.

    Article  CAS  Google Scholar 

  • Lee DBN, Brautbar N, Walling M W, Silis V, Carlson HE, GrindelandR E, Coburn J W, Kleeman C R: Role of growth hormone in experimental phosphorus deprivation in the rat. Calcif. Tissue Int. 1980, 32, 105–112.

    Article  CAS  Google Scholar 

  • Lee DBN, Brautbar N, Walling N W, Carlsson HE, Golvin C, Coburn J W, Kleeman CR: The biochemical indices of experimental phosphorus depletion (PD): a re-examination of their physiological implications Adv. exp. Med. Biol. 1977, 103, 381–394.

    Article  CAS  Google Scholar 

  • Lichtman MA, Miller DR, Cohen J, Waterhouse C: Reduced red cell glycolysis, 2,3-DPG and adenosine triphosphate concentration and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann. Int. Med. 1971, 74, 562–568.

    Article  CAS  Google Scholar 

  • Martinsson K, Ekman L, Löfstedt M, Figueiras H, Jönsson L: Organ weights and concentration of zinc in different tissues of wasting pigs and pigs with regional ileitis. Zbl. Vet. Med. A, 1978, 25, 570–578.

    Article  CAS  Google Scholar 

  • Pastoriza-Munos E, Mishler DR, Lechene C: Effect of phosphate deprivation on phosphate reab-sorption in rat nephron: role of PTH. Amer. J. Physiol. 1983, 244, 140–149.

    Google Scholar 

  • Pond WG, Maner JH: Swine production and nutrition: Animal science textbook series. Publ. West Port, Conn. AWL 1984.

    Google Scholar 

  • Rajan S, Levinson R, Leevy C M: Hepatic hypoxia secondary to hypophosphatemia. Clin. Res. 1973, 27, 521.

    Google Scholar 

  • Ray Sarkar B C, Chauhan UPS: A new method for determining micro quantities of calcium in biological materials. Anal. Biochem. 1967, 20, 155–166.

    Article  Google Scholar 

  • SAS: SAS users guide: Statistics, version 5 edition, SAS Institute Inc, Cary, N. C, USA, 1985.

    Google Scholar 

  • Schwarz K B, Zimmerman D C, Alpers D H, Avioli L V: Gender differences in antacid-induced phosphate deprivation in rats. Gastroenterology 1985, 89, 313–320.

    Article  CAS  Google Scholar 

  • Silvis S E, Paragas P V: Fatal hyperalimentation syndrome: Animal studies. J. Lab. clin. Med. 1971, 78, 918–930.

    CAS  PubMed  Google Scholar 

  • Spencer H, Kramer L, Norris C, Osis D: Effect of small doses of aluminum-containing antacids on calcium and phosphorus metabolism. Amer. J. clin. Nutr. 1982, 36, 32–40.

    Article  CAS  Google Scholar 

  • Stoerk H C, Carnes WH: The relation of the dietary Ca: P ratio to serum Ca and to parathyroid volume. J. Nutr. 1945, 29, 43–50.

    Article  CAS  Google Scholar 

  • Tanaka Y, De Luca HF: The control of 25-hydroxy-vitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys. 1973, 154, 566–574.

    Article  CAS  Google Scholar 

  • Theiler A, Green HH: Aphosphorosis in ruminants. Nutr. Abs. Rev. 1932, 1, 359–385.

    CAS  Google Scholar 

  • The nutrient requirements of Farm livestock No 3: Pigs. Technical reviews and summaries. Agricultural research Council. London, England 1981.

Download references

Acknowledgement

We gratefully acknowledge support from Laboratoires Biothérax, France and Astra Medical AB, Sweden.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hdglin, L., Essén-Gustavsson, B., Kallner, A. et al. Hypophosphatemia Induced by Dietary Aluminium Hydroxide Supplementation in Pigs: Effects on growth, blood variables, organ weights and renal morphology. Acta Vet Scand 29, 91–99 (1988). https://doi.org/10.1186/BF03548397

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03548397

Keywords