Ahmad M, Srivastava BS, Agarwala SC: Effect of incubation media on the recovery of Escherichia coli K12 heated at 52°C. J Gen Microbiol. 1978, 107: 37-44.
CAS
PubMed
Google Scholar
Ahmed NM, Conner DE: Evaluation of various media for recovery of thermally-injured Escherichia coli O157:H7. J Food Prot. 1995, 58: 357-360.
Google Scholar
Anderson WA, Hedges ND, Jones MV, Cole MB: Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry. J Gen Microbiol. 1991, 137: 1419-1424.
CAS
PubMed
Google Scholar
Anellis A, Lubas J, Rayman MM: Heat resistance in liquid eggs of some strains of the genus Salmonella. Food Res. 1954, 19: 377-395.
Google Scholar
Baird-Parker AC, Boothroyd M, Jones E: The effect of water activity on the heat resistance of heat sensitive and heat resistant strains of salmonellae. J Appl Bacteriol. 1970, 33: 515-522.
CAS
PubMed
Google Scholar
Baker RC: Survival of Salmonella enteritidis on and in shelled eggs, liquid eggs and cooked egg products. Dairy Food Environ Sanit. 1990, 10: 273-275.
Google Scholar
Bartlett FM, Hawke AE: Heat resistance of Listeria monocytogenes Scott A and HAL 957E1 in various liquid egg products. J Food Prot. 1995, 58: 1211-1214.
Google Scholar
Beuchat LR, Brackett RE, Hao DY-Y, Conner DE: Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice. Can J Microbiol. 1986, 32: 791-795.
CAS
PubMed
Google Scholar
Beuchat LR, Lechowich RV: Survival of heated Streptococcus faecalis as affected by phase of growth and incubation temperature after thermal exposure. J Appl Bacteriol. 1968, 31: 414-419.
CAS
PubMed
Google Scholar
Blackburn C de W, Curtis LM, Humpheson L, Billon C, McClure PJ: Development of thermal inactivation models for Salmonella enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. Int J Food Microbiol. 1997, 38: 31-44. 10.1016/S0168-1605(97)00085-8.
Google Scholar
Blankenship LC, Craven SE: Campylobacter jejuni survival in chicken meat as a function of temperature. Appl Environ Microbiol. 1982, 44: 88-92.
PubMed Central
CAS
PubMed
Google Scholar
Boutibonnes P, Giard JC, Hartke A, Thammavongs B, Auffray Y: Characterization of the heat shock response in Enterococcus faecalis. Antonie van Leeuwenhoek. 1993, 64: 47-55. 10.1007/BF00870921.
CAS
PubMed
Google Scholar
Boyle DL, Sofos JN, Schmidt GR: Thermal destruction of Listeria monocytogenes in a meat slurry and in ground beef. J Food Sci. 1990, 55: 327-329. 10.1111/j.1365-2621.1990.tb06754.x.
Google Scholar
Bradshaw JG, Peeler JT, Corwin JJ, Barnett JE, Twedt RM: Thermal resistance of disease-associated Salmonella typhimurium in milk. J Food Prot. 1987, 50: 95-96.
Google Scholar
Bradshaw JG, Peeler JT, Corwin JJ, Hunt JM, Tierney JT, Larkin EP, Twedt RM: Thermal resistance of Listeria monocytogenes in milk. J Food Prot. 1985, 48: 743-745.
Google Scholar
Bradshaw JG, Peeler JT, Corwin JJ, Hunt JM, Twedt RM: Thermal resistance of Listeria monocytogenes in dairy products. J Food Prot. 1987, 50: 543-544. 556
Google Scholar
Bradshaw JG, Peeler JT, Twedt RM: Thermal resistance of Listeria spp. in milk. J Food Prot. 1991, 54: 12-14. 19
Google Scholar
Bunning VK, Crawford RG, Bradshaw JG, Peeler JT, Tierney JT, Twedt RM: Thermal resistance of intracellular Listeria monocytogenes cells suspended in raw bovine milk. Appl Environ Microbiol. 1986, 52: 1398-1402.
PubMed Central
CAS
PubMed
Google Scholar
Bunning VK, Crawford RG, Tierney JT, Peeler JT: Thermotolerance of Listeria monocytogenes and Salmonella typhimurium after sublethal heat shock. Appl Environ Microbiol. 1990, 56: 3216-3219.
PubMed Central
CAS
PubMed
Google Scholar
Bunning VK, Crawford RG, Tierney JT, Peeler JT: Thermotolerance of heat-shocked Listeria monocytogenes in milk exposed to high-temperature, short-time pasteurization. Appl Environ Microbiol. 1992, 58: 2096-2098.
PubMed Central
CAS
PubMed
Google Scholar
Bunning VK, Donnelly CW, Peeler JT, Briggs EH, Bradshaw JG, Crawford RG, Beliveau CM, Tierney JT: Thermal inactivation of Listeria monocytogenes within bovine milk phagocytes. Appl Environ Microbiol. 1988, 54: 364-370.
PubMed Central
CAS
PubMed
Google Scholar
Calhoun CL, Frazier WC: Effect of available water on thermal resistance of three nonsporeforming species of bacteria. Appl Microbiol. 1966, 14: 416-420.
PubMed Central
CAS
PubMed
Google Scholar
Casadei MA, Esteves de Matos R, Harrison ST, Gaze JE: Heat resistance of Listeria monocytogenes in dairy products as affected by the growth medium. J Appl Microbiol. 1998, 84: 234-239. 10.1046/j.1365-2672.1998.00334.x.
CAS
PubMed
Google Scholar
Chambers CW, Tabak HH, Kabler PW: Effect of Krebs cycle metabolites on the viability of Escherichia coli treated with heat and chlorine. J Bacteriol. 1957, 73: 77-84.
PubMed Central
CAS
PubMed
Google Scholar
Christopher FM, Smith GC, Vanderzant C: Effect of temperature and pH on the survival of Campylobacter fetus. J Food Prot. 1982, 45: 253-259.
Google Scholar
Clark CW, Witter LD, Ordal ZJ: Thermal injury and recovery of Streptococcus faecalis. Appl Microbiol. 1968, 16: 1764-1769.
PubMed Central
CAS
PubMed
Google Scholar
Clavero MRS, Beuchat LR: Suitability of selective plating media for recovering heat- or freezestressed Escherichia coli O157:H7 from tryptic soy broth and ground beef. Appl Environ Microbiol. 1995, 61: 3268-3273.
PubMed Central
CAS
PubMed
Google Scholar
Clavero MRS, Beuchat LR: Survival of Escherichia coli O157:H7 in broth and processed salami as influenced by pH, water activity, and temperature and suitability of media for its recovery. Appl Environ Microbiol. 1996, 62: 2735-2740.
PubMed Central
CAS
PubMed
Google Scholar
Clementi F, Parente E, Ricciardi A, Addario G, Moresi M: Heat resistance of Escherichia coli in goat milk: a comparison between the sealed capillary tube technique and a laboratory slug flow heat exchanger. Ital J Food Sci. 1995, 7: 235-243.
Google Scholar
Colton T: Statistics in Medicine. 1974, Little Brown, Boston, 191-202. 207–211, 1
Google Scholar
Corry JEL: The effect of sugars and polyols on the heat resistance of salmonellae. J Appl Bacteriol. 1974, 37: 31-43.
CAS
PubMed
Google Scholar
Corry JEL, Barnes EM: The heat resistance of salmonellae in egg albumen. Brit Poult Sci. 1968, 9: 253-260. 10.1080/00071666808415716.
CAS
Google Scholar
Dabbah R, Moats WA, Edwards VM: Survivor curves of selected Salmonella enteritidis serotypes in liquid whole egg homogenates at 60°C. Poultry Sci. 1971, 50: 1772-1776.
CAS
Google Scholar
Dabbah R, Moats WA, Edwards VM: Heat survivor curves of food-borne bacteria suspended in commercially sterilized whole milk. I Salmonellae J Dairy Sci. 1971, 54: 1583-1588.
CAS
PubMed
Google Scholar
Dabbah R, Moats WA, Edwards VM: Heat survivor curves of food-borne bacteria suspended in commercially sterilized whole milk. II. Bacteria other than salmonellae. J Dairy Sci. 1971, 54: 1772-1779.
CAS
PubMed
Google Scholar
D'Aoust J-Y, Emmons DB, McKellar R, Timbers GE, Todd ECD, Sewell AM, Warburton DW: Thermal inactivation of Salmonella species in fluid milk. J Food Prot. 1987, 50: 494-501.
Google Scholar
D'Aoust J-Y, Park CE, Szabo RA, Todd ECD, Emmons DB, McKellar RC: Thermal inactivation of Campylobacter species, Yersinia enterocolitica and hemorrhagic Escherichia coli O157:H7 in fluid milk. J Dairy Sci. 1988, 71: 3230-3236.
PubMed
Google Scholar
Davidson CM, Boothroyd M, Georgala DL: Thermal resistance of Salmonella senftenberg. Nature. 1966, 212: 1060-1061. 10.1038/2121060a0.
CAS
PubMed
Google Scholar
Dega CA, Goepfert JM, Amundson CH: Heat resistance of salmonellae in concentrated milk. Appl Microbiol. 1972, 23: 415-420.
PubMed Central
CAS
PubMed
Google Scholar
Donnelly CW, Briggs EH: Psychrotrophic growth and thermal inactivation of Listeria monocytogenes as a function of milk composition. J Food Prot. 1986, 49: 994-998.
Google Scholar
Donnelly CW, Briggs EH, Donnelly LS: Comparison of heat resistance of Listeria monocytogenes in milk as determined by two methods. J Food Prot. 1987, 50: 14-17,20.
Google Scholar
Doyle ME, Mazzotta AS: Review of studies on the thermal resistance of salmonellae. J Food Prot. 2000, 63: 779-795.
CAS
PubMed
Google Scholar
Doyle ME, Mazzotta AS, Wang T, Wiseman DW, Scott VN: Review. Heat resistance of Listeria monocytogenes. J Food Prot. 2001, 64: 410-429.
CAS
PubMed
Google Scholar
Doyle MP, Roman DJ: Growth and survival of Campylobacter fetus subsp. jejuni as a function of temperature and pH. J Food Prot. 1981, 44: 596-601.
Google Scholar
El-Shenawy MA, Yousef AE, Marth EH: Thermal inactivation and injury of Listeria monocytogenes in reconstituted nonfat dry milk. Milchwissenschaft. 1989, 44: 741-745.
Google Scholar
Elliker PR, Frazier WC: Influence of time and temperature of incubation on heat resistance of Escherichia coli. J Bacteriol. 1938, 36: 83-98.
PubMed Central
CAS
PubMed
Google Scholar
Evans DA, Hankinson DJ, Litsky W: Heat resistance of certain pathogenic bacteria in milk using a commercial plate heat exchanger. J Dairy Sci. 1970, 53: 1659-1665.
CAS
PubMed
Google Scholar
Fairchild TM, Foegeding PM: A proposed non-pathogenic biological indicator for thermal inactivation of Listeria monocytogenes. Appl Environ Microbiol. 1993, 59: 1247-1250.
PubMed Central
CAS
PubMed
Google Scholar
Farber JM, Pagotto F: The effect of acid shock on the heat resistance of Listeria monocytogenes. Lett Appl Microbiol. 1992, 15: 197-201.
CAS
Google Scholar
Farber JM, Sanders GW, Speirs JI, D'Aoust J-Y, Emmons DB, McKellar R: Thermal resistance of Listeria monocytogenes in inoculated and naturally contaminated raw milk. Int J Food Microbiol. 1988, 7: 277-286. 10.1016/0168-1605(88)90054-2.
CAS
PubMed
Google Scholar
Fedio WM, Jackson H: Effect of tempering on the heat resistance of Listeria monocytogenes. Lett Appl Microbiol. 1989, 9: 157-160.
Google Scholar
Fernández Garayzabal JF, Domínguez Rodríguez L, Vázques Boland JA, Rodríguez Ferri EF, Briones Dieste V, Blanco Cancelo JL, Suárez Fernández G: Survival of Listeria monocytogenes in raw milk treated in a pilot plant size pasteurizer. J Appl Bacteriol. 1987, 63: 533-537.
PubMed
Google Scholar
Flahaut S, Frere J, Boutibonnes P, Auffray Y: Relationship between the thermotolerance and the increase of DnaK and GroEL synthesis in Enterococcus faecalis ATCC 19433. J Basic Microbiol. 1997, 37: 251-258. 10.1002/jobm.3620370404.
CAS
PubMed
Google Scholar
Flahaut S, Hartke A, Giard J-C, Benachour A, Boutibonnes P, Auffray Y: Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett. 1996, 138: 49-54. 10.1111/j.1574-6968.1996.tb08133.x.
CAS
PubMed
Google Scholar
Foegeding PM, Leasor SB: Heat resistance and growth of Listeria monocytogenes in liquid whole egg. J Food Prot. 1990, 53: 9-14.
Google Scholar
Foegeding PM, Stanley NW: Listeria innocua transformed with an antibiotic resistance plasmid as a thermal-resistance indicator for Listeria monocytogenes. J Food Prot. 1991, 54: 519-523.
Google Scholar
Francis DW, Spaulding PL, Lovett J: Enterotoxin production and thermal resistance of Yersinia enterocolitica in milk. Appl Environ Microbiol. 1980, 40: 174-176.
PubMed Central
CAS
PubMed
Google Scholar
Gadzella TA, Ingham SC: Heat shock, anaerobic jar incubation and fluid thioglycollate medium have contrasting effects on D-values of Escherichia coli. J Food Prot. 1994, 57: 671-673.
Google Scholar
Gardner GA, Patton J: A note on the heat resistance of a Streptococcus faecalis isolated from a "soft core" in canned ham. Proc 21st Europ Meet Meat Res Workers, Bern. 1975, 52-54.
Google Scholar
Garibaldi JA, Ijichi K, Bayne HG: Effect of pH and chelating agents on the heat resistance and viability of Salmonella typhimurium Tm-1 and Salmonella senftenberg 775W in egg white. Appl Microbiol. 1969, 18: 318-322.
PubMed Central
CAS
PubMed
Google Scholar
Garibaldi JA, Straka RP, Ijichi K: Heat resistance of Salmonella in various egg products. Appl Microbiol. 1969, 17: 491-496.
PubMed Central
CAS
PubMed
Google Scholar
George SM, Peck MW: Redox potential affects the measured heat resistance of Escherichia coli O157:H7 independently of oxygen concentration. Lett Appl Microbiol. 1998, 27: 313-317. 10.1046/j.1472-765X.1998.00466.x.
CAS
PubMed
Google Scholar
George SM, Richardson LCC, Pol IE, Peck MW: Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes. J Appl Microbiol. 1998, 84: 903-909. 10.1046/j.1365-2672.1998.00424.x.
CAS
PubMed
Google Scholar
Gibson B: The effect of high sugar concentrations on the heat resistance of vegetative micro-organisms. J Appl Bacteriol. 1973, 36: 365-376.
CAS
PubMed
Google Scholar
Gill KPW, Bates PG, Lander KP: The effect of pasteurization on the survival of Campylobacter spedies in milk. Brit Vet J. 1981, 137: 578-584.
Google Scholar
Goepfert JM, Iskander IK, Amundson CH: Relation of the heat resistance of salmonellae to the water activity of the environment. Appl Microbiol. 1970, 19: 429-433.
PubMed Central
CAS
PubMed
Google Scholar
Golden DA, Beuchat LR, Brackett RE: Inactivation and injury of Listeria monocytogenes as affected by heating and freezing. Food Microbiol. 1988, 5: 17-23. 10.1016/0740-0020(88)90004-4.
Google Scholar
Gordon CLA, Ahmad MH: Thermal susceptibility of Streptococcus faecium strains isolated from frankfurters. Can J Microbiol. 1991, 37: 609-612.
CAS
PubMed
Google Scholar
Greenberg RA, Silliker JH: Evidence for heat injury in enterococci. Food Res. 1961, 26: 622-625.
Google Scholar
Hanna MO, Stewart JC, Carpenter ZL, Vanderzant C: A research note. Heat resistance of Yersinia enterocolitica in skim milk. J Food Sci. 1977, 42: 1134, 1136-
Google Scholar
Hansen N-H, Riemann H: Factors affecting the heat resistance of nonsporing organisms. J Appl Bacteriol. 1963, 26: 314-333.
Google Scholar
Holland RF, Dahlberg AC: The effect of the time and temperature of pasteurization upon some of the properties and constituents of milk. New York State Agricultural Experiment Station, Technical Bulletin No. 254. 1940, 18-22. 39–55,
Google Scholar
Holsinger VH, Smith PW, Smith JL, Palumbo SA: Thermal destruction of Listeria monocytogenes in ice cream mix. J Food Prot. 1992, 55: 234-237.
Google Scholar
Humpheson L, Adams MR, Anderson WA, Cole MB: Biphasic thermal inactivation kinetics in Salmonella enteritidis PT4. Appl Environ Microbiol. 1998, 64: 459-464.
PubMed Central
CAS
PubMed
Google Scholar
Humphrey TJ: The effects of pH and levels of organic matter on the death rates of salmonellas in chicken scald-tank water. J Appl Bacteriol. 1981, 51: 27-39.
CAS
PubMed
Google Scholar
Humphrey TJ: Heat resistance in Salmonella enteritidis phage type 4: the influence of storage temperatures before heating. J Appl Bacteriol. 1990, 69: 493-497.
CAS
PubMed
Google Scholar
Humphrey TJ, Chapman PA, Rowe B, Gilbert RJ: A comparative study of the heat resistance of salmonellas in homogenized whole egg, egg yolk or albumen. Epidemiol Infect. 1990, 104: 237-241.
PubMed Central
CAS
PubMed
Google Scholar
Humphrey TJ, Cruickshank JG: Antibiotic and deoxycholate resistance in Campylobacter jejuni following freezing or heating. J Appl Bacteriol. 1985, 59: 65-71.
CAS
PubMed
Google Scholar
Humphrey TJ, Lanning DG: Salmonella and campylobacter contamination of broiler chicken carcasses and scald tank water: the influence of water pH. J Appl Bacteriol. 1987, 63: 21-25.
CAS
PubMed
Google Scholar
Humphrey TJ, Lanning DG, Beresford D: The effect of pH adjustment on the microbiology of chicken scald-tank water with particular reference to the death rate of salmonellas. J Appl Bacteriol. 1981, 51: 517-527.
CAS
PubMed
Google Scholar
Humphrey TJ, Richardson NP, Gawler AHL, Allen MJ: Heat resistance of Salmonella enteritidis PT4: the influence of prior exposure to alkaline conditions. Lett Appl Microbiol. 1991, 12: 258-260.
Google Scholar
Humphrey TJ, Richardson NP, Statton KM, Rowbury RJ: Effects of temperature shift on acid and heat tolerance in Salmonella enteritidis phage type 4. Appl Environ Microbiol. 1993, 59: 3120-3122.
PubMed Central
CAS
PubMed
Google Scholar
Humphrey TJ, Slater E, McAlpine K, Rowbury RJ, Gilbert RJ: Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid, or hydrogen peroxide also survive longer on surfaces. Appl Environ Microbiol. 1995, 61: 3161-3164.
PubMed Central
CAS
PubMed
Google Scholar
Humphrey TJ, Wallis M, Hoad M, Richardson NP, Rowbury RJ: Factors influencing alkali-induced heat resistance in Salmonella enteritidis phage type 4. Lett Appl Microbiol. 1993, 16: 147-149.
Google Scholar
Ienistea C, Chitu M, Roman A: Heat resistance in milk of some strains of group D streptococci from pasteurized milk and the influence exerted on their growth by selective media. Zbl Bakt, I Abt Orig. 1970, 215: 173-181.
CAS
Google Scholar
Jackson TC, Hardin MD, Acuff GR: Heat resistance of Escherichia coli O157:H7 in a nutrient medium and in ground beef patties as influenced by storage and holding temperatures. J Food Prot. 1996, 59: 230-237.
CAS
PubMed
Google Scholar
Jenkins DE, Schultz JE, Matin A: Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988, 170: 3910-3914.
PubMed Central
CAS
PubMed
Google Scholar
Jørgensen F, Panaretou B, Stephens PJ, Knøchel S: Effect of pre- and post-heat shock temperature on the persistence of thermotolerance and heat shock-induced proteins in Listeria monocytogenes. J Appl Bacteriol. 1996, 80: 216-224.
PubMed
Google Scholar
Jørgensen F, Stephens PJ, Knøchel S: The effect of osmotic shock and subsequent adaptation on the thermotolerance and cell morphology of Listeria monocytogenes. J Appl Bacteriol. 1995, 79: 274-281.
Google Scholar
Juneja VK, Foglia TA, Marmer BS: Heat resistance and fatty acid composition of Listeria monocytogenes: effect of pH, acidulant, and growth temperature. J Food Prot. 1998, 61: 683-687.
CAS
PubMed
Google Scholar
Katsui N, Tsuchido T, Takano M, Shibasaki I: Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions. J Gen Microbiol. 1981, 122: 357-361.
CAS
PubMed
Google Scholar
Katzin LI, Sandholzer LA, Strong ME: Application of the decimal reduction time principle to a study of the resistance of coliform bacteria to pasteurization. J Bacteriol. 1943, 45: 265-272.
PubMed Central
CAS
PubMed
Google Scholar
Kaur J, Ledward DA, Park RWA, Robson RL: Factors affecting the heat resistance of Escherichia coli O157:H7. Lett Appl Microbiol. 1998, 26: 325-330. 10.1046/j.1472-765X.1998.00339.x.
CAS
PubMed
Google Scholar
Kearns AM, Freeman R, Lightfoot NF: Nosocomial enterococci: resistance to heat and sodium hypochlorite. J Hosp Infect. 1995, 30: 193-199. 10.1016/S0195-6701(95)90314-3.
CAS
PubMed
Google Scholar
Knabel SJ, Walker HW, Hartman PA, Mendonca AF: Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization. Appl Environ Microbiol. 1990, 56: 370-376.
PubMed Central
CAS
PubMed
Google Scholar
Knight KP, Bartlett FM, McKellar RC, Harris LJ: Nisin reduces the thermal resistance of Listeria monocytogenes Scott A in liquid whole egg. J Food Prot. 1999, 62: 999-1003.
CAS
PubMed
Google Scholar
Konvincic I, Mrdjen M, Komnenov-Pupovac V, Vujicic IF, Vulic M, Svabic-Vlahovic M, Tierney JT: Heat resistance of Listeria monocytogenes in naturally infected and inoculated cow's milk. Acta Microbiol Hung. 1991, 38: 3-6.
Google Scholar
Kornacki JL, Marth EH: Thermal inactivation of Enterococcus faecium in retentates from ultrafiltered milk. Milchwissenschaft. 1992, 47: 764-769.
Google Scholar
Krishna Iyengar MK, Laxminarayana H, Iya KK: Studies on the heat-resistance of some streptococci. Indian J Dairy Sci. 1957, 10: 90-99.
Google Scholar
Lategan PM, Vaughn RH: The influence of chemical additives on the heat resistance of Salmonella typhimurium in liquid whole egg. J Food Sci. 1964, 29: 339-344. 10.1111/j.1365-2621.1964.tb01741.x.
CAS
Google Scholar
Lemaire V, Cerf O, Audurier A: Thermal resistance of Listeria monocytogenes. Ann Rech Vét. 1989, 20: 493-500.
CAS
PubMed
Google Scholar
Lemcke RM, White HR: The heat resistance of Escherichia coli cells from cultures of different ages. J Appl Bacteriol. 1959, 22: 193-201.
Google Scholar
Leyer GJ, Johnson EA: Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol. 1993, 59: 1842-1847.
PubMed Central
CAS
PubMed
Google Scholar
Linton RH, Pierson MD, Bishop JR: Increase in heat resistance of Listeria monocytogenes Scott A by sublethal heat shock. J Food Prot. 1990, 53: 924-927.
Google Scholar
Lou Y, Yousef AE: Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J Food Prot. 1996, 59: 465-471.
Google Scholar
Lovett J, Bradshaw JG, Peeler JT: Thermal inactivation of Yersinia enterocolitica in milk. Appl Environ Microbiol. 1982, 44: 517-519.
PubMed Central
CAS
PubMed
Google Scholar
Mackey BM, Bratchell N: A review. The heat resistance of Listeria minocytogenes. Lett Appl Microbiol. 1989, 9: 89-94.
Google Scholar
Mackey BM, Derrick CM: Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986, 61: 389-393.
CAS
PubMed
Google Scholar
Mackey BM, Derrick CM: Changes in the heat resistance of Salmonella typhimurium during heating at rising temperatures. Lett Appl Microbiol. 1987, 4: 13-16.
Google Scholar
Mackey BM, Derrick CM: The effect of prior heat shock on the thermoresistance of Salmonella thompson in foods. Lett Appl Microbiol. 1987, 5: 115-118.
Google Scholar
Mackey BM, Derrick C: Heat shock protein synthesis and thermotolerance in Salmonella typhimurium. J Appl Bacteriol. 1990, 69: 373-383.
CAS
PubMed
Google Scholar
Mackey BM, Pritchet C, Norris A, Mead GC: Heat resistance of Listeria: strain differences and effects of meat type and curing salts. Lett Appl Microbiol. 1990, 10: 251-255.
Google Scholar
Magnus CA, Ingledew WM, McCurdy AR: Thermal resistance of streptococci isolated from pasteurized ham. Can Inst Food Sci Technol J. 1986, 19: 62-67.
Google Scholar
Magnus CA, McCurdy AR, Ingledew WM: Evaluation of four media for recovery of heat-stressed streptococci. J Food Prot. 1988, 51: 895-897.
Google Scholar
McKenna RT, Patel SV, Cirigliano MC: Thermal resistance of Listeria monocytogenes in raw liquid egg yolk. J Food Prot. 1991, 54: 816-
Google Scholar
Meyer DH, Donnelly CW: Effect of incubation temperature on repair of heat-injured Listeria in milk. J Food Prot. 1992, 55: 579-582.
Google Scholar
Michalski CB, Brackett RE, Hung Y-C, Ezeike GOI: Use of capillary tubes and plate heat exchanger to validate U.S. Department of Agriculture pasteurization protocols for elimination of Salmonella enteritidis from liquid egg products. J Food Prot. 1999, 62: 112-117.
CAS
PubMed
Google Scholar
Moats WA, Dabbah R, Edwards VM: Survival of Salmonella anatum heated in various media. Appl Microbiol. 1971, 21: 476-481.
PubMed Central
CAS
PubMed
Google Scholar
Morgan JN, Lin FJ, Eitenmiller RR, Barnhart HM, Toledo RT: Thermal destruction of Escherichia coli and Klebsiella pneumoniae in human milk. J Food Prot. 1988, 51: 132-136.
Google Scholar
Mulak V, Tailliez R, Eb P, Becel P: Heat resistance of bacteria isolated from preparations based on seafood products. J Food Prot. 1995, 58: 49-53.
Google Scholar
Murano EA, Pierson MD: Effect of heat shock and growth atmosphere on the heat resistance of Escherichia coli O157:H7. J Food Prot. 1992, 55: 171-175.
CAS
Google Scholar
Murano EA, Pierson MD: Effect of heat shock and incubation atmosphere on injury and recovery of Escherichia coli O157:H7. J Food Prot. 1993, 56: 568-572.
Google Scholar
Muriana PM, Hou H, Singh RK: A flow-injection system for studying heat inactivation of Listeria monocytogenes and Salmonella enteritidis in liquid whole egg. J Food Prot. 1996, 59: 121-126.
Google Scholar
Ng H: Heat sensitivity of 300 Salmonella isolates. U.S. Department of Agriculture, Agricultural Research Service ARS 74-37. 1966, 39-41.
Google Scholar
Ng H, Bayne HG, Garibaldi JA: Heat resistance of Salmonella: the uniqueness of Salmonella senftenberg 775W. Appl Microbiol. 1969, 17: 78-82.
PubMed Central
CAS
PubMed
Google Scholar
Norberg P: Yersinia i opastöriserad mjölk (Yersinia enterocolitica in raw milk). Vår Föda. 1981, 33: 45-51. (In Swedish, summary in English)
Google Scholar
Northolt MD, Beckers HJ, Vecht U, Toepoel L, Soentoro PSS, Wisselink HJ: Listeria monocytogenes: heat resistance and behaviour during storage of milk and whey and making of Dutch types of cheese. Neth Milk Dairy J. 1988, 42: 207-219.
Google Scholar
Okrend AJ, Johnston RW, Moran AB: Effect of acetic acid on the death rates at 52°C of Salmonella newport, Salmonella typhimurium and Campylobacter jejuni in poultry scald water. J Food Prot. 1986, 49: 500-503.
CAS
Google Scholar
Oosterom J, de Wilde GJA, de Boer E, de Blaauw LH, Karman H: Survival of Campylobacter jejuni during poultry processing and pig slaughtering. J Food Prot. 1983, 46: 702-706. 709
Google Scholar
Osborne WW, Straka RP, Lineweaver H: Heat resistance of strains of Salmonella in liquid whole egg, egg yolk, and egg white. Food Res. 1954, 19: 451-463.
Google Scholar
Pagán R, Mañas P, Alvarez I, Sala FJ: Heat resistance in different heating media of Listeria monocytogenes ATCC 15313 grown at different temperatures. J Food Safety. 1998, 18: 205-219. 10.1111/j.1745-4565.1998.tb00215.x.
Google Scholar
Pagán R, Mañas P, Raso J, Trepat FJS: Heat resistance of Yersinia enterocolitica grown at different temperatures and heated in different media. Int J Food Microbiol. 1999, 47: 59-66. 10.1016/S0168-1605(99)00008-2.
PubMed
Google Scholar
Palumbo MS, Beers SM, Bhaduri S, Palumbo SA: Thermal resistance of Salmonella spp. and Listeria monocytogenes in liquid egg yolk and egg yolk products. J Food Prot. 1995, 58: 960-966.
Google Scholar
Palumbo MS, Beers SM, Bhaduri S, Palumbo SA: Thermal resistance of Listeria monocytogenes and Salmonella spp. in liquid egg white. J Food Prot. 1996, 59: 1182-1186.
Google Scholar
Patchett RA, Watson N, Fernandez PS, Kroll RG: The effect of temperature and growth rate on the susceptibility of Listeria monocytogenes to environmental stress conditions. Lett Appl Microbiol. 1996, 22: 121-124.
CAS
PubMed
Google Scholar
Patel SS, Wilbey RA: Thermal inactivation of γ-glutamyltranspeptidase and Enterococcus faecium in milk-based systems. J Dairy Res. 1994, 61: 263-270.
CAS
PubMed
Google Scholar
Pflug IJ, Holcomb RG: Principles of thermal destruction of microorganisms. Disinfection, Sterilization, and Preservation. Edited by: Block SS. 1983, Lea & Febiger, Philadelphia, 751-810. 3
Google Scholar
Quintavalla S, Barbuti S: Resistenza termica di Listeria innocua e di Listeria monocytogenes isolate da carne suina (Heat resistance of Listeria innocua and Listeria monocytogenes isolated from pork). Industria Conserve. 1989, 64: 8-12. (In Italian, summary in English)
Google Scholar
Quintavalla S, Campanini M: Effect of rising temperature on the heat resistance of Listeria monocytogenes in meat emulsion. Lett Appl Microbiol. 1991, 12: 184-187.
Google Scholar
Quintavalla S, Campanini M, Miglioli L: Effetto della velocità di riscaldamento sulla resistenza termica di Streptococcus faecium (Effect of heating rate on the heat resistance of Streptococcus faecium). Industria Conserve. 1988, 63: 252-256. (In Italian, summary in English)
Google Scholar
Read RB, Bradshaw JG, Dickerson RW, Peeler JT: Thermal resistance of salmonellae isolated from dry milk. Appl Microbiol. 1968, 16: 998-1001.
PubMed Central
PubMed
Google Scholar
Read RB, Norcross NL, Hankinson DJ, Litsky W: Come-up time method of milk pasteurization. III. Bacteriological studies. J Dairy Sci. 1957, 40: 28-36.
Google Scholar
Read RB, Schwartz C, Litsky W: Studies on thermal destruction of Escherichia coli in milk and milk products. J Appl Microbiol. 1961, 9: 415-418.
Google Scholar
Renner P, Peters J: Resistance of enterococci to heat and chemical agents. Zbl Hyg Umweltmed. 1998, 202: 41-50.
Google Scholar
Richards T, White HRB: The heat disinfection of Streptococcus faecalis. Proc Soc Appl Bacteriol. 1949, 2: 61-65.
Google Scholar
Rossebø L: Undersøkelser over resistens overfor fuktig varme hos stammer av Salmonella senftenberg isolert fra sildemel (Wet heat resistance in strains of Salmonella senftenberg isolated from herring meal). Nord Vet-Med. 1970, 22: 631-633. (In Norwegian, summary in English)
Google Scholar
Rowan NJ, Anderson JG: Effects of above-optimum growth temperature and cell morphology on thermotolerance of Listeria monocytogenes cells suspended in bovine milk. Appl Environ Microbiol. 1998, 64: 2065-2071.
PubMed Central
CAS
PubMed
Google Scholar
Sanz Pérez B, López Lorenzo P, García ML, Hernández PE, Ordoñez JA: Heat resistance of enterococci. Milchwissenschaft. 1982, 37: 724-726.
Google Scholar
Schuman JD, Sheldon BW: Thermal resistance of Salmonella spp. and Listeria monocytogenes in liquid egg yolk and egg white. J Food Prot. 1997, 60: 634-638.
Google Scholar
Semanchek JJ, Golden DA: Influence of growth temperature on inactivation and injury of Escherichia coli O157:H7 by heat, acid, and freezing. J Food Prot. 1998, 61: 395-401.
CAS
PubMed
Google Scholar
Shah DB, Bradshaw JG, Peeler JT: Thermal resistance of egg-associated epidemic strains of Salmonella enteritidis. J Food Sci. 1991, 56: 391-393. 10.1111/j.1365-2621.1991.tb05287.x.
Google Scholar
Shannon EL, Reinbold GW, Clark WS: Heat resistance of enterococci. J Milk Food Technol. 1970, 33: 192-196.
Google Scholar
Shenoy K, Murano EA: Effect of heat shock on the thermotolerance and protein composition of Yersinia enterocolitica in brain heart infusion broth and ground pork. J Food Prot. 1996, 59: 360-364.
CAS
Google Scholar
Simpson MV, Smith JP, Ramaswamy HS, Simpson BK, Ghazala S: Thermal resistance of Streptococcus faecium as influenced by pH and salt. Food Res Int. 1994, 27: 349-353. 10.1016/0963-9969(94)90190-2.
CAS
Google Scholar
Solowey M, Sutton RR, Calesnick EJ: Heat resistance of Salmonella organisms isolated from spray-dried whole-egg powder. Food Technol. 1948, 2: 9-14.
Google Scholar
Sörqvist S: Heat resistance of Campylobacter and Yersinia strains by three methods. J Appl Bacteriol. 1989, 67: 543-549.
PubMed
Google Scholar
Sörqvist S: Heat resistance of Listeria monocytogenes by two recovery media used with and without cold preincubation. J Appl Bacteriol. 1993, 74: 428-432.
PubMed
Google Scholar
Sörqvist S: Heat resistance of different serovars of Listeria monocytogenes. J Appl Bacteriol. 1994, 76: 383-388.
Google Scholar
Sörqvist S, Danielsson-Tham M-L: Survival of Campylobacter, Salmonella and Yersinia spp. in scalding water used at pig slaughter. Fleischwirtsch. 1990, 70: 1451-1454.
Google Scholar
Steinmeyer S: Untersuchungen zu Pathogenität, Hitzeresistenz und Acriflavinempfindlichkeit von Listerienstämmen (Investigations of pathogenicity, heat resistance and acriflavine sensitivity of Listeria strains). Dissertation, Munich. 1988, 60-75. (In German)
Google Scholar
Stephens PJ, Cole MB, Jones MV: Effect of heating rate on the thermal inactivation of Listeria monocytogenes. J Appl Bacteriol. 1994, 77: 702-708.
CAS
PubMed
Google Scholar
Stringer SC, George SM, Peck MW: Thermal inactivation of Escherichia coli O157:H7. J Appl Microbiol Symposium Supplement. 2000, 88: 79S-89S.
Google Scholar
Stumbo CR: Thermobacteriology in Food Processing. 1973, Academic Press, New York, 70-120. 2
Google Scholar
Suárez Fernández G, Suárez Rodríguez M, Fernández Garayzabal F, Domínguez Rodríguez L: Termorresistencia de Listeria monocytogenes (Thermal resistance of Listeria monocytogenes). Alimentaria. 1989, 200: 51-53. (In Spanish, summary in English)
Google Scholar
Teo Y-L, Raynor TJ, Ellajosyula KR, Knabel SJ: Synergistic effect of high temperature and high pH on the destruction of Salmonella enteritidis and Escherichia coli O157:H7. J Food Prot. 1996, 59: 1023-1030.
Google Scholar
Thomas CT, White JC, Longrée K: Thermal resistance of salmonellae and staphylococci in foods. Appl Microbiol. 1966, 14: 815-820.
PubMed Central
CAS
PubMed
Google Scholar
Thompson WS, Busta FF, Thompson DR, Allen CE: Inactivation of salmonellae in autoclaved ground beef exposed to constantly rising temperatures. J Food Prot. 1979, 42: 410-415.
Google Scholar
Toora S, Budu-Amoako E, Ablett RF, Smith J: Effect of high-temperature short-time pasteurization, freezing and thawing and constant freezing, on the survival of Yersinia enterocolitica in milk. J Food Prot. 1992, 55: 803-805.
Google Scholar
Tsuchido T, Takano M, Shibasaki I: Effect of temperature-elevating process on the subsequent isothermal death of Escherichia coli K-12. J Ferment Technol. 1974, 52: 788-792.
Google Scholar
Vrchlabsky J, Leistner L: Hitzeresistenz der Enterokokken bei unterschiedlichen aw-Werten. (Heat resistance of enterococci at different aw values). Fleischwirtsch. 1970, 50: 1237-1238. (In German, summary in English)
Google Scholar
Waterman SC: The heat-sensitivity of Campylobacter jejuni in milk. J Hyg Camb. 1982, 88: 529-533.
PubMed Central
CAS
PubMed
Google Scholar
White HR: The heat resistance of Streptococcus faecalis. J Gen Microbiol. 1953, 8: 27-37.
CAS
PubMed
Google Scholar
White HR: The effect of variation in pH on the heat resistance of cultures of Streptococcus faecalis. J Appl Bacteriol. 1963, 26: 91-99.
Google Scholar
Williams NC, Ingham SC: Changes in heat resistance of Escherichia coli O157:H7 following heat shock. J Food Prot. 1997, 60: 1128-1131.
Google Scholar
Williams NC, Ingham SC: Thermotolerance of Escherichia coli O157:H7 ATCC 43894, Escherichia coli B, and an rpoS -deficient mutant of Escherichia coli O157:H7 ATCC 43895 following exposure to 1.5% acetic acid. J Food Prot. 1998, 61: 1184-1186.
CAS
PubMed
Google Scholar
Wolfson LM, Sumner SS: Antibacterial activity of the lactoperoxidase system against Salmonella typhimurium in trypticase soy broth in the presence and absence of a heat treatment. J Food Prot. 1994, 57: 365-368.
CAS
Google Scholar
Xavier IJ, Ingham S: Increased D-values for Salmonella enteritidis resulting from the use of anaerobic enumeration methods. Food Microbiol. 1993, 10: 223-228. 10.1006/fmic.1993.1024.
Google Scholar
Yamamori T, Yura T: Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci USA. 1982, 79: 860-864. 10.1073/pnas.79.3.860.
PubMed Central
CAS
PubMed
Google Scholar
Zivanovic R, Oluski A, Tadic Z: Contribution to the knowledge of thermoresistance of the group D streptococci by Lancefield. Tehnologija Mesa. 1965, 6: 198-205.
Google Scholar